Anales de la Fundación Alberto J. Roemmers | 09 SEP 20

Inducción y caracterización de fenotipo colesterogénico mediante la tecnología de CRISPRon.

Tanto el colesterol como elevados niveles de uno de sus receptores (LDLR) se consideran factores de riesgo, promotores del crecimiento tumoral
Autor/a: Maria Paula Marks, Luciano Vellón, Juan Carlos Calvo, Sabrina Fletcher, Virginia Novaro, Jimena Rodriguez. 
INDICE:  1. Texto principal Parte (I) | 2. Texto principal Parte (II) | 3. Referencias bibliográficas
Referencias bibliográficas
1.    Adams JM, Strasser A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 2008;68(11):4018–21.
2.    Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution. Cell. 2009;138(5):822–9.
3.    Clevers   H.   The   cancer   stem   cell:   Premises,   promises   and   challenges.   Nat   Med. 2011;17(3):313–9.
4.    Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol. 2012;13(2):e83–9.
5.    Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY, et al. Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Rev Rep. 2020;16(2):397-412.
6.    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.
7.    O’Brien CA, Kreso A, Dick JE. Cancer Stem Cells in Solid Tumors: An Overview. Semin Radiat Oncol. 2009;19(2):71–7.
8.    Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E- cadherin. PLoS One. 2013;8(10):e77281.
9.    Gangopadhyay S, Nandy A, Hor P, Mukhopadhyay A. Breast Cancer Stem Cells: A Novel Therapeutic Target. Clin Breast Cancer. 2013;13(1):7–15.
10.    Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, et al. Cancer stem cells in solid tumors: An overview and new approaches for their isolation and characterization. FASEB J. 2013;27(1):13–24.
11.    Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci. 2017;74(6):951–66.
12.    Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2014;2(1):78–91.
13.    Kim JJ. Applications of iPSCs in cancer research. Biomark Insights. 2015;10(S1):125–31.
14.    Ramos-Mejia V, Fraga MF, Menendez P. iPSCs from cancer cells: challenges and opportunities. Trends Mol Med. 2012;18(5):245–7.
15.    Chan V, Varlakhanova N, Barrilleaux BL, Bush KM, Riggs JW, Knoepfler PS. Induced Pluripotency and Oncogenic Transformation Are Related Processes. Stem Cells Dev. 2012;22(1):37–50.
16.    Banito A, Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep. 2010;11(5):353–9.
17.    Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31(11):1354–65.
18.    Semi K, Yamada Y. Induced  pluripotent stem cell technology for  dissecting the cancer epigenome. Cancer Sci. 2015;106(10):1251–6.
19.    Lu B, Huang X, Mo J, Zhao W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol. 2016;7(84):1–12.
20.    Wang    YP,    Lei    QY.    Perspectives    of     Reprogramming     Breast     Cancer Metabolism. 2017;1026:217-232.
21.    Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. 2016;16(11):718-731.
22.    Meaney S. Epigenetic regulation of cholesterol homeostasis. 2014;5:311.
23.    Göbel A, Rauner M, Hofbauer LC, Rachner TD. Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188351.
24.    Ding X, Zhang W, Li S, Yang H. The role of cholesterol metabolism in cancer. Am J Cancer Res. 2019;9(2):219–27.
25.    Silvente-Poirot S, Poirot M. Cholesterol metabolism and cancer: The good, the bad and the ugly. Curr Opin Pharmacol. 2012;12(6):673–6.
26.    Danilo C, Frank PG. Cholesterol and breast cancer development. Curr Opin Pharmacol. 2012;12(6):677–82.
27.    Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27- Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology.
Science. 2013;342(6162):1094–8.
28.    Borgquist S, Bjarnadottir O, Kimbung S, Ahern TP. Statins: a role in breast cancer therapy?. J Intern Med. 2018;284(4):346–57.
29.    Kwan   ML, Habel   LA, Flick   ED, Quesenberry   CP, Caan   B.    Post-diagnosis statin use and breast cancer recurrence in prospective cohort study of early stage breast cancer survivors. Breast Cancer Res Treat. 2008;109(3):573-9.
30.    Zhong S, Zhang X, Chen L, Ma T, Tang J, Zhao J. Statin use and mortality in cancer patients: Systematic review and meta-analysis of observational studies. Cancer Treat Rev. 2015;41(6):554–67.
31.    Sharon C, Baranwal S, Patel NJ, Rodriguez-Agudo D, Pandak WM, Majumdar APN, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6(17):15332–47.
32.    Ginestier C, Monville F, Wicinski J, Cabaud O, Cervera N, Josselin E, et al. Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells. 2012;30(7):1327–37.
33.    Fiorillo M, Peiris-Pagès M, Sanchez-Alvarez R, Bartella L, Di Donna L, Dolce V, et al. Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism. Biochim Biophys Acta Bioenerg. 2018;1859(9):984–96.
34.    Peng Y, He G, Tang D, Xiong L, Wen Y, Miao X, et al. Lovastatin inhibits Cancer stem cells and Sensitizes to chemo- and photodynamic therapy in Nasopharyngeal carcinoma. J Cancer. 2017;8(9):1655–64.
35.    Afzali M, Vatankhah M, Ostad S. Investigation of simvastatin-induced apoptosis and cell cycle arrest in cancer stem cells of MCF-7. J Cancer Res Ther. 2016;12(2):725–30.
36.    Vásquez-bochm LX, Velázquez-paniagua M, Castro-vázquez SS, Guerrero-rodríguez SL, Mondragon-peralta A, Fuente-granada MD La, et al. Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacol Rep. 2019;71(3):535–44.
37.    Gopalan A, Yu W, Sanders BG, Kline K. Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett [Internet]. 2013;328(2):285–96.
38.    Li Y, Xian M, Yang B, Ying M, He Q. Inhibition of KLF4 by Statins Reverses Adriamycin- Induced Metastasis and Cancer Stemness in Osteosarcoma Cells. Stem Cell Reports. 2017;8(6):1617–29.
39.    Rennó  AL,  Alves-júnior  MJ,  Rocha  RM,  Souza  PC  De,  De  VB,  Jampietro  J,  et  al. Decreased expression of stem cell markers by simvastatin in 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer. Toxicol Pathol. 2015;43(3):400-10.
40.    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–50.
41.    Shui B, Hernandez Matias L, Guo Y, Peng Y. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int. 2016;2016:1–17.
42.    Wang H, Jaenisch R, Katz Y, Cheng AW, Rangarajan S, Dadon DB, et al. Multiplexed activation of endogenous genes  by CRISPR-on, an RNA-guided  transcriptional activator system. Cell Res. 2013;23(10):1163–71.
43.    Luo J. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery The CRISPR/Cas9 Endonuclease System. 2017;2(6):313–24.
44.    Questa M, Romorini L, Blüguermann C, Solari CM, Neiman G, Luzzani C, et al. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts. Stem Cell Res. 2016;16(2):300–3.
45.    Videla Richardson GA, Garcia CP, Roisman A, Slavutsky I, Fernandez Espinosa DD, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. 2016;26(1):43-61.
46.    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.
47.    Hu Y, Smyth GK. ELDA: Extreme limiting dilution  analysis for  comparing depleted  and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70– 8.
48.    Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin  GA, et al. Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A. 2010;107


Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2021