Un complejo de fenómenos que subyacen al riesgo CV | 26 SEP 19

Resistencia a la insulina, diabetes y riesgo cardiovascular

El vínculo entre los factores ambientales, obesidad y disglucemia indica que la progresión a la diabetes ocurre a lo largo de un "continuo", no necesariamente lineal, que involucra diferentes mecanismos celulares
Autor/a: Francesco Paneni, Sarah Costantino y Francesco Cosentino Fuente: Curr Atheroscler Rep (2014) 16:419  Insulin Resistance, Diabetes, and Cardiovascular Risk
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas


Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. 2007;356:213–5.PubMedCrossRefGoogle Scholar


Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011;96:1654–63.PubMedCentralPubMedCrossRefGoogle Scholar


Despres JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126:1301–13.PubMedCrossRefGoogle Scholar


Eckel RH. The complex metabolic mechanisms relating obesity to hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2011;31:1946–8.PubMedCrossRefGoogle Scholar


Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.PubMedCrossRefGoogle Scholar


Arsenault BJ, Beaumont EP, Despres JP, Larose E. Mapping body fat distribution: a key step towards the identification of the vulnerable patient? Ann Med. 2012;44:758–72.PubMedCrossRefGoogle Scholar


Despres JP. Intra-abdominal obesity: an untreated risk factor for Type 2 diabetes and cardiovascular disease. J Endocrinol Investig. 2006;29:77–82.Google Scholar


Ryden L, Mellbin L. Joint ESC/EASD guidelines on diabetes, where are we now and where should we go? Curr Vasc Pharmacol. 2012;10:690–2.PubMedCrossRefGoogle Scholar


Paneni F. 2013 ESC/EASD guidelines on the management of diabetes and cardiovascular disease: established knowledge and evidence gaps. Diabetes Vasc Dis Res. 2014;11:5–10.CrossRefGoogle Scholar


Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.PubMedCrossRefGoogle Scholar


Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA. 1999;281:1291–7.PubMedCrossRefGoogle Scholar


Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436–43.PubMedCentralPubMedCrossRefGoogle Scholar


Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J. 2013;34:2444–52.PubMedCrossRefGoogle Scholar


Anselmino M, Ryden L. Strategies to enhance cardiovascular disease prevention in patients with diabetes. Curr Opin Cardiol. 2009;24:461–7.PubMedCrossRefGoogle Scholar


Authors/Task Force M, Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34:3035–87. The recent ESC/EASD Guidelines on the management of diabetes and CVD represent an important document providing a systematic approach to diagnose and treat the combination of DM and CVD. The evidence-based strategy promoted by the ESC/EASD Guidelines will be invaluable for a consistent improvement of CV outcome in DM subjects, thus strengthening the importance of appropriate diagnostic and therapeutic algorithms to achieve the best care for patients in an individualized setting.PubMedCrossRefGoogle Scholar


Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet. 1980;1:1373–6.PubMedCrossRefGoogle Scholar


Lenzen M, Ryden L, Ohrvik J, Bartnik M, Malmberg K, Scholte Op Reimer W, et al. Diabetes known or newly detected, but not impaired glucose regulation, has a negative influence on 1-year outcome in patients with coronary artery disease: a report from the Euro Heart Survey on diabetes and the heart. Eur Heart J. 2006;27:2969–74.PubMedCrossRefGoogle Scholar


Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–4.PubMedCrossRefGoogle Scholar


The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in Europe. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet. 1999;354:617–21.CrossRefGoogle Scholar


Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79.PubMedCentralPubMedCrossRefGoogle Scholar


Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.PubMedCrossRefGoogle Scholar


Faerch K, Vaag A, Holst JJ, Hansen T, Jorgensen T, Borch-Johnsen K. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care. 2009;32:439–44.PubMedCentralPubMedCrossRefGoogle Scholar


Kim SH, Reaven GM. Isolated impaired fasting glucose and peripheral insulin sensitivity: not a simple relationship. Diabetes Care. 2008;31:347–52.PubMedCrossRefGoogle Scholar


Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS ONE. 2012;7:e52036.PubMedCentralPubMedCrossRefGoogle Scholar


Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–85.PubMedCentralPubMedCrossRefGoogle Scholar


Paneni F, Gregori M, Tocci G, Palano F, Ciavarella GM, Pignatelli G, et al. Do diabetes, metabolic syndrome or their association equally affect biventricular function? A tissue Doppler study. Hypertens Res. 2013;36:36–42.PubMedCrossRefGoogle Scholar


Kumar R, Lee TT, Jeremias A, Ruisi CP, Sylvia B, Magallon J, et al. Comparison of outcomes using sirolimus-eluting stenting in diabetic versus nondiabetic patients with comparison of insulin versus non-insulin therapy in the diabetic patients. Am J Cardiol. 2007;100:1187–91.PubMedCrossRefGoogle Scholar


Uetani T, Amano T, Harada K, Kitagawa K, Kunimura A, Shimbo Y, et al. Impact of insulin resistance on post-procedural myocardial injury and clinical outcomes in patients who underwent elective coronary interventions with drug-eluting stents. JACC Cardiovasc Interv. 2012;5:1159–67.PubMedCrossRefGoogle Scholar


Kim SH, Reaven GM. Insulin resistance and hyperinsulinemia: you can't have one without the other. Diabetes Care. 2008;31:1433–8.PubMedCentralPubMedCrossRefGoogle Scholar


Bartnik M, Ryden L, Ferrari R, Malmberg K, Pyorala K, Simoons M, et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J. 2004;25:1880–90.PubMedCrossRefGoogle Scholar


Control G, Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52:2288–98.CrossRefGoogle Scholar


Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.PubMedCrossRefGoogle Scholar


Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, Maggioni AP, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.PubMedCrossRefGoogle Scholar


Cosentino F, Luscher TF. Tetrahydrobiopterin and endothelial nitric oxide synthase activity. Cardiovasc Res. 1999;43:274–8.PubMedCrossRefGoogle Scholar


Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.PubMedCentralPubMedCrossRefGoogle Scholar


Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, et al. Protein kinase C-beta contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation. 2013;127:86–95. This study, performed in primary human endothelial cells isolated from T2DM patients, is the first to provide clear evidence concerning the activation of PKC-related pathways in the diabetic endothelium. These findings have important implications for mechanism-based therapeutic approaches to prevent vascular disease burden in diabetic patients.PubMedCentralPubMedCrossRefGoogle Scholar


Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106:1319–31.PubMedCentralPubMedCrossRefGoogle Scholar


Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622–8.PubMedCrossRefGoogle Scholar


Paneni F, Cosentino F, Marrara F, Palano F, Capretti G, Gregori M, et al. The clinical relevance of dysfunctional HDL in patients with coronary artery disease: a 3-year follow-up study. Int J Cardiol. 2012;158:158–60.PubMedCrossRefGoogle Scholar


Migliaccio E, Giorgio M, Pelicci PG. Apoptosis and aging: role of p66Shc redox protein. Antioxid Redox Signal. 2006;8:600–8.PubMedCrossRefGoogle Scholar


Trinei M, Migliaccio E, Bernardi P, Paolucci F, Pelicci P, Giorgio M. p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol. 2013;528:99–110.PubMedCrossRefGoogle Scholar


Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A. 2007;104:5217–22.PubMedCentralPubMedCrossRefGoogle Scholar


Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab. 2005;90:1130–6.PubMedCrossRefGoogle Scholar


Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, et al. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111:278–89. Our recent work provides mechanistic insights for the persistent of vascular dysfunction despite optimal glycemic control with insulin. We demonstrated that epigenetic changes of p66(Shc) promoter, namely DNA hypomethylation and increased histone 3 acetylation, drive persistent oxidative stress and endothelial dysfunction during subsequent normoglycemia. These data suggest that chromatin alterations may contribute to an explanation of the residual vascular risk in diabetic patients.Google Scholar


Paneni F, Volpe M, Luscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013;62:1800–7.PubMedCentralPubMedCrossRefGoogle Scholar


Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vascu Pharmacol. 2012;57:133–8.CrossRefGoogle Scholar


El-Osta A. Glycemic memory. Curr Opin Lipidol. 2012;23:24–9.PubMedCrossRefGoogle Scholar


Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res. 2010;107:1403–13.PubMedCrossRefGoogle Scholar


Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.PubMedCentralPubMedCrossRefGoogle Scholar


Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230:191–7.PubMedCrossRefGoogle Scholar


Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57:1349–54.PubMedCrossRefGoogle Scholar


El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17. El-Osta et al. demonstrate for the first time that transient spikes of hyperglycemia activate persistent epigenetic signatures in the human endothelium leading to NF-kB upregulation and subsequent inflammation. This work indicates that glycemic flucutations rather than costant high glucose is a detrimental process triggering vascular damage in diabetic patients.PubMedCentralPubMedCrossRefGoogle Scholar


Picconi F, Di Flaviani A, Malandrucco I, Giordani I, Frontoni S. Impact of glycemic variability on cardiovascular outcomes beyond glycated hemoglobin. Evidence and clinical perspectives. Nutr Metab Cardiovasc Dis. 2012;22:691–6.PubMedCrossRefGoogle Scholar


Bazinet M, Hamdy S, Begin L, Aprikian A, Fair W, Wright G. Monoclonal-antibody pd-41 recognizes a prostate-cancer associated antigen whose expression increases in metastases and following hormonal-therapy. Int J Oncol. 1995;7:1421–5.PubMedGoogle Scholar


Bigornia SJ, Farb MG, Tiwari S, Karki S, Hamburg NM, Vita JA, et al. Insulin status and vascular responses to weight loss in obesity. J Am Coll Cardiol. 2013;62:2297–305.PubMedCrossRefGoogle Scholar


Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.PubMedCrossRefGoogle Scholar


Kim JK. Endothelial nuclear factor kappaB in obesity and aging: is endothelial nuclear factor kappaB a master regulator of inflammation and insulin resistance? Circulation. 2012;125:1081–3.PubMedCrossRefGoogle Scholar


Hasegawa Y, Saito T, Ogihara T, Ishigaki Y, Yamada T, Imai J, et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012;125:1122–33. The article shows that the transcription factor NF-kB is critically involved in endothelial IR. Suppression of NF-kB signaling in the endothelium results in improved insulin signaling in other organs as well as improved lifespan in mice. These novel findings suggest that NF-kB is a key molecular intermediate linking metabolic disease, inflammation, and aging.PubMedCrossRefGoogle Scholar


Rask-Madsen C, Li Q, Freund B, Feather D, Abramov R, Wu IH, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11:379–89.PubMedCentralPubMedCrossRefGoogle Scholar


Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116:1071–80.PubMedCentralPubMedCrossRefGoogle Scholar


Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307.PubMedCrossRefGoogle Scholar


Li Q, Park K, Li C, Rask-Madsen C, Mima A, Qi W, et al. Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase C-beta isoform in the endothelium. Circ Res. 2013;113:418–27.PubMedCentralPubMedCrossRefGoogle Scholar


Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, Rosano GM. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258:250–6.PubMedCrossRefGoogle Scholar


Naka KK, Papathanassiou K, Bechlioulis A, Pappas K, Kazakos N, Kanioglou C, et al. Rosiglitazone improves endothelial function in patients with type 2 diabetes treated with insulin. Diabetes Vasc Dis Res. 2011;8:195–201.CrossRefGoogle Scholar


Avogaro A, de Kreutzenberg SV, Federici M, Fadini GP. The endothelium abridges insulin resistance to premature aging. J Am Heart Assoc. 2013;2:e000262.PubMedCentralPubMedCrossRefGoogle Scholar


Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–21.PubMedCrossRefGoogle Scholar


Roffi M, Angiolillo DJ, Kappetein AP. Current concepts on coronary revascularization in diabetic patients. Eur Heart J. 2011;32:2748–57.PubMedCrossRefGoogle Scholar


Folsom AR, Chambless LE, Ballantyne CM, Coresh J, Heiss G, Wu KK, et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med. 2006;166:1368–73.PubMedCrossRefGoogle Scholar


Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol. 2013;62:667–76.PubMedCrossRefGoogle Scholar


Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.PubMedCrossRefGoogle Scholar


Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino Jr RB, et al. Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study. J Clin Endocrinol Metab. 2010;95:2868–76.PubMedCentralPubMedCrossRefGoogle Scholar


Geisler T, Mueller K, Aichele S, Bigalke B, Stellos K, Htun P, et al. Impact of inflammatory state and metabolic control on responsiveness to dual antiplatelet therapy in type 2 diabetics after PCI: prognostic relevance of residual platelet aggregability in diabetics undergoing coronary interventions. Clin Res Cardiol. 2010;99:743–52.PubMedCrossRefGoogle Scholar


Hohenstein B, Hugo CP, Hausknecht B, Boehmer KP, Riess RH, Schmieder RE. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol Dial Transplant. 2008;23:1346–54.PubMedCrossRefGoogle Scholar


Meigs JB, Larson MG, Fox CS, Keaney Jr JF, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care. 2007;30:2529–35.PubMedCrossRefGoogle Scholar


Paneni F, Cosentino F. Advanced glycation endproducts and plaque instability: a link beyond diabetes. Eur Heart J. 2013. doi: 10.1093/eurheartj/eht454.PubMedCentralGoogle Scholar


Meerwaldt R, Graaff R, Oomen PH, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47:1324–30.PubMedCrossRefGoogle Scholar


Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93:583–93.PubMedCentralPubMedCrossRefGoogle Scholar


Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease. Circ Res. 2012;110:508–22.PubMedCrossRefGoogle Scholar


Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7. This comprehensive analysis shows an array of deregulated miRs in diabetic patients, thus shedding some light on potential biomarkers in this arena. Among other miRs, miR-126, an important pro-angiogenic precursor, was significantly downregulated in plasma samples from T2DM patients.PubMedCrossRefGoogle Scholar


Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P, Paneni F, et al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood. 2013;121:226–36.PubMedCrossRefGoogle Scholar


Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010;8:2358–68.PubMedCrossRefGoogle Scholar


Tsimerman G, Roguin A, Bachar A, Melamed E, Brenner B, Aharon A. Involvement of microparticles in diabetic vascular complications. Thromb Haemost. 2011;106:310–21.PubMedCrossRefGoogle Scholar


Chen Y, Feng B, Li X, Ni Y, Luo Y. Plasma endothelial microparticles and their correlation with the presence of hypertension and arterial stiffness in patients with type 2 diabetes. J Clin Hypertens (Greenwich). 2012;14:455–60.CrossRefGoogle Scholar


Bernard S, Loffroy R, Serusclat A, Boussel L, Bonnefoy E, Thevenon C, et al. Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT). Atherosclerosis. 2009;203:429–35.PubMedCrossRefGoogle Scholar



Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí