¿Cómo afecta la diabetes a la salud ósea? | 21 MAR 16

Diabetes tipo 2 y esqueleto

A pesar de tener una masa ósea normal a elevada, los pacientes con diabetes tipo 2 tienen un aumento moderado del riesgo de fractura, independiente del sexo y la raza o la etnia.
Autor/a: Vikram V Shanbhogue, Deborah M Mitchell, Cliff ord J Rosen, Mary L Bouxsein Fuente: Lancet Diabetes Endocrinol 2016; 4: 159–73 Type 2 diabetes and the skeleton: new insights into sweet bones
INDICE:  1. Página 1 | 2. Página 3 | 3. Referencias

1 Leslie WD, Rubin MR, Schwartz AV, Kanis JA. Type 2 diabetes and bone. J Bone Miner Res 2012; 27: 2231–37.
2 Karim L, Bouxsein ML. Eff ect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone 2015; published online July 23.DOI:10.1016/j.bone.2015.07.028.
3 Farr JN, Khosla S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone 2015; pubished online July 26. DOI:10.1016/j.bone.2015.07.027.
4 Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 2007; 18: 427–44.
5 Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007; 166: 495–505.
6 Strotmeyer ES, Cauley JA, Schwartz AV, et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, And Body Composition Study. Arch Intern Med 2005; 165: 1612–17.
7 Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 2006; 91: 3404–10.
8 Napoli N, Strotmeyer ES, Ensrud KE, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 2014; 57: 2057–65.
9 Looker AC, Eberhardt MS, Saydah SH. Diabetes and fracture risk in older U.S. adults. Bone 2015; published online Jan 7. DOI:10.1016/j.bone.2014.12.008.
10 Koh WP, Wang R, Ang LW, Heng D, Yuan JM, Yu MC. Diabetes and risk of hip fracture in the Singapore Chinese Health Study. Diabetes Care 2010; 33: 1766–70.
11 Li CI, Liu CS, Lin WY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study. J Bone Miner Res 2015;30: 1338–46.
12 Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 2008; 23: 1334–42.
13 Ivers RQ, Cumming RG, Mitchell P, Peduto AJ, and the Blue Mountains Eye Study. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care 2001; 24: 1198–203.
14 Schwartz AV, Sellmeyer DE, Ensrud KE, et al, and the Study of Osteoporotic Features Research Group. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001; 86: 32–38.
15 Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 2006; 17:1065–77.
16 Hanley DA, Brown JP, Tenenhouse A, et al. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res 2003; 18: 784–90.
17 Ensrud KE, Thompson DE, Cauley JA, et al, and the Fracture Intervention Trial Research Group. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriatr Soc 2000; 48: 241–49.
18 Johnell O, Kanis JA, Black DM, et al. Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 2004;19: 764–72.
19 Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 2012; 27: 319–32.
20 Strotmeyer ES, Cauley JA, Schwartz AV, et al. Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res 2004; 19: 1084–91.
21 Kao WH, Kammerer CM, Schneider JL, Bauer RL, Mitchell BD. Type 2 diabetes is associated with increased bone mineral density in Mexican-American women. Arch Med Res 2003; 34: 399–406.
22 Majima T, Komatsu Y, Yamada T, et al. Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients. Osteoporos Int 2005; 16: 907–13.
23 Shan PF, Wu XP, Zhang H, Cao XZ, Yuan LQ, Liao EY. Age-related bone mineral density, osteoporosis rate and risk of vertebral fracture in mainland Chinese women with type 2 diabetes mellitus. J Endocrinol Invest 2011; 34: 190–96.
24 De L 2nd, Van der Klift M, De Laet CE, Van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 2005; 16: 1713–20.
25 Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 2013; 36: 1619–28.
26 Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 2012; 27: 119–24.
27 Heilmeier U, Carpenter DR, Patsch JM, et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels diff er between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos Int 2015; 26: 1283–93.
28 Melton LJ 3rd, Riggs BL, Leibson CL, et al. A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab 2008; 93: 4804–09.
29 Petit MA, Paudel ML, Taylor BC, et al. Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 2010; 25: 285–91.
30 Schwartz AV, Ewing SK, Porzig AM, et al. Diabetes and change in bone mineral density at the hip, calcaneus, spine, and radius in older women. Front Endocrinol (Lausanne) 2013; 4: 62.
31 Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL, and the fracture intervention trial. Eff ect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 2004; 27: 1547–53.
32 Khalil N, Sutton-Tyrrell K, Strotmeyer ES, et al. Menopausal bone changes and incident fractures in diabetic women: a cohort study. Osteoporos Int 2011; 22: 1367–76.
33 Schwartz AV, Sellmeyer DE, Strotmeyer ES, et al. Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 2005; 20: 596–603.
34 Nguyen TV, Center JR, Eisman JA. Femoral neck bone loss predicts fracture risk independent of baseline BMD. J Bone Miner Res 2005;20: 1195–201.
35 Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identifi cation of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 2005; 20: 1813–19.
36 Yu EW, Finkelstein JS. Bone density screening intervals for osteoporosis: one size does not fi t all. JAMA 2012; 307: 2591–92.
37 Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int 2003; 14 (suppl 5): S118–27.
38 Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 5045–55.
39 Yu EW, Putman MS, Derrico N, Abrishamanian-Garcia G, Finkelstein JS, Bouxsein ML. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos Int 2015; 26: 673–79.
40 Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosis y in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013; 28: 313–24.
41 Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 2014; 29: 787–95.
42 Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am 2013;42: 697–719.
43 Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 1315–21.
44 Saito M, Marumo K. Eff ects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int 2015; 97: 242–61.
45 Odetti P, Rossi S, Monacelli F, et al. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 2005; 1043: 710–17.
46 Tang SY, Zeenath U, Vashishth D. Eff ects of non-enzymatic glycation on cancellous bone fragility. Bone 2007; 40: 1144–51.
47 Randall C, Bridges D, Guerri R, et al. Applications of a new handheld reference point indentation instrument measuring bone material strength. J Med Devices 2013; 7: 410051–56.
48 Fantner GE, Hassenkam T, Kindt JH, et al. Sacrifi cial bonds and hidden length dissipate energy as mineralized fi brils separate during bone fracture. Nat Mater 2005; 4: 612–16.
49 Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119 (suppl 1): S10–16.
50 Wei J, Shimazu J, Makinistoglu MP, et al. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Diff erentiation and Bone Formation. Cell 2015; 161: 1576–91.
51 Wei J, Ferron M, Clarke CJ, et al. Bone-specifi c insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014; 124: 1–13.
52 Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients–a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 2014; 25: 1697–708.
53 Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfi tt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44: 775–82.
54 Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97: 3240–50.
55 Leite Duarte ME, da Silva RD. Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo 1996;51: 7–11 (in Portuguese).
56 Ardawi MS, Akhbar DH, Alshaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 2013; 56: 355–62.
57 Dobnig H, Piswanger-Solkner JC, Roth M, et al. Type 2 diabetes mellitus in nursing home patients: eff ects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 2006; 91: 3355–63.
58 Undale A, Srinivasan B, Drake M, et al. Circulating osteogenic cells: characterization and relationship to rates of bone loss in postmenopausal women. Bone 2010; 47: 83–92.
59 Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 2008;26: 93–100.
60 Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 2008; 93: 1013–19.
61 Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G, and the European Group for the Study of Insulin Resistance (EGIR). Insulin resistance and hypersecretion in obesity. J Clin Invest 1997; 100: 1166–73.
62 Johansson H, Kanis JA, Oden A, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 2014; 29: 223–33.
63 Premaor MO, Comim FV, Compston JE. Obesity and fractures. Arq Bras Endocrinol Metabol 2014; 58: 470–77.
64 Prieto-Alhambra D, Premaor MO, Fina Aviles F, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 2012; 27: 294–300.
65 Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res 2015;30: 920–28.
66 Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and
strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res 2013; 28: 1679–87.
67 Andersen S, Frederiksen KD, Hansen S, Brixen K, Gram J, Stoving RK. Bone structure and estimated bone strength in obese patients evaluated by high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 2014; 95: 19–28.
68 Fox CS, Massaro JM, Hoff mann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
69 Wang L, Wang W, Xu L, et al. Relation of visceral and subcutaneous adipose tissue to bone mineral density in Chinese women. Int J Endocrinol 2013; 2013: 378632.
70 Zhang P, Peterson M, Su GL, Wang SC. Visceral adiposity is negatively associated with bone density and muscle attenuation. Am J Clin Nutr 2015; 101: 337–43.
71 Bredella MA, Lin E, Gerweck AV, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab 2012; 97: 4115–22.
72 Bredella MA, Torriani M, Ghomi RH, et al. Determinants of bone mineral density in obese premenopausal women. Bone 2011;48: 748–54.
73 Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic infl ammation in obese humans. Diabetes 2007; 56: 1010–13.
74 Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specifi c protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.
75 Hickman J, McElduff A. Insulin promotes growth of the cultured rat osteosarcoma cell line UMR-106-01: an osteoblast-like cell. Endocrinology 1989; 124: 701–06.
76 Cornish J, Callon KE, Reid IR. Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 1996; 59: 492–95.
77 Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010;142: 296–308.
78 Stolk RP, Van Daele PL, Pols HA, et al. Hyperinsulinemia and bone mineral density in an elderly population: The Rotterdam Study. Bone 1996; 18: 545–49.
79 Haff ner SM, Bauer RL. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metabolism 1993; 42: 735–38.
80 Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 2000; 17: 124–29.
81 Dagogo-Jack S, al-Ali N, Qurttom M. Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 1997; 82: 2821–25.
82 Christensen JD, Lungu AO, Cochran E, et al. Bone mineral content in patients with congenital generalized lipodystrophy is unaff ected by metreleptin replacement therapy. J Clin Endocrinol Metab 2014;99: E1493–500.
83 Prasad K. Low levels of serum soluble receptors for advanced glycation end products, biomarkers for disease state: myth or reality. Int J Angiol 2014; 23: 11–16.
84 Schaff er SW, Jong CJ, Mozaff ari M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul Pharmacol 2012; 57: 139–49.
85 Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 2015; 6: 109–20.
86 Viegas M, Costa C, Lopes A, Griz L, Medeiro MA, Bandeira F. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications 2011; 25: 216–21.
87 Strotmeyer ES, Cauley JA, Schwartz AV, et al. Reduced peripheral nerve function is related to lower hip BMD and calcaneal QUS in older white and black adults: the Health, Aging, and Body Composition Study. J Bone Miner Res 2006; 21: 1803–10.
88 Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 2009; 84: 45–55.
89 Tanaka KI, Kanazawa I, Sugimoto T. Reduction in endogenous insulin secretion is a risk factor of sarcopenia in men with type 2 diabetes mellitus. Calcif Tissue Int 2015; published online April 8. DOI:10.1007/s00223-015-9990-8.
90 Tang X, Liu G, Kang J, et al. Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS One 2013; 8: e55077.
91 Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005; 289: E735–45.
92 Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000; 105: 935–43.
93 Maor G, Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor. Endocrinology 1999; 140: 1841–51.
94 Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008; 31: 199–203.
95 Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005;48: 1292–99.
96 Shah M, Kola B, Bataveljic A, et al. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 2010; 47: 309–19.
97 Molinuevo MS, Schurman L, McCarthy AD, et al. Eff ect of metformin on bone marrow progenitor cell diff erentiation: in vivo and in vitro studies. J Bone Miner Res 2010; 25: 211–21.
98 Kahn SE, Haff ner SM, Heise MA, et al, and the ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355: 2427–43.
99 Borges JL, Bilezikian JP, Jones-Leone AR, et al. A randomized, parallel group, double-blind, multicentre study comparing the effi cacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naive type 2 diabetes mellitus patients. Diabetes Obes Metab 2011; 13: 1036–46.
100 Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 2011; 34: 2474–76.
101 Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Eff ects of diabetes drugs on the skeleton. Bone 2015; published online April 23. DOI:10.1016/j.bone.2015.04.026.
102 Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones:an updated meta-analysis of randomized clinical trials. Bone 2014;68: 115–23.
103 Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab 2010; 28: 554–60.
104 Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res 2005; 20: 1497–506.
105 Xie D, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 2007; 40: 1352–60.
106 Zhong Q, Itokawa T, Sridhar S, et al. Eff ects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 2007; 292: E543–48.
107 Bolinder J, Ljunggren O, Johansson L, et al. Dapaglifl ozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014;16: 159–69.
108 Ljunggren O, Bolinder J, Johansson L, et al. Dapaglifl ozin has no eff ect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 2012; 14: 990–99.
109 Su B, Sheng H, Zhang M, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine 2015; 48: 107–15.
110 Tirmenstein M, Dorr TE, Janovitz EB, et al. Nonclinical toxicology assessments support the chronic safety of dapaglifl ozin, a fi rst-inclass sodium-glucose cotransporter 2 inhibitor. Int J Toxicol 2013;32: 336–50.
111 Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapaglifl ozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014; 85: 962–71.
112 Taylor SI, Blau JE, Rother KI. Possible adverse eff ects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 2015; 3: 8–10.
113 Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 2013; 1: 140–51.
114 Johnson KH, O’Brien TD, Hayden DW, et al. Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 1988; 130: 1–8.
115 Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011;91: 795–826.
116 Cornish J, Callon KE, Cooper GJ, Reid IR. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 1995; 207: 133–39.
117 Datta HK, Zaidi M, Wimalawansa SJ, et al. In vivo and in vitro eff ects of amylin and amylin-amide on calcium metabolism in the rat and rabbit. Biochem Biophys Res Commun 1989; 162: 876–81.
118 Pietschmann P, Farsoudi KH, Hoff mann O, Klaushofer K, Horandner H, Peterlik M. Inhibitory eff ect of amylin on basal and parathyroid hormone-stimulated bone resorption in cultured neonatal mouse calvaria. Bone 1993; 14: 167–72.
119 Dacquin R, Davey RA, Laplace C, et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 2004; 164: 509–14.
120 Cornish J, Callon KE, King AR, Cooper GJ, Reid IR. Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 1998; 275: E694–99.
121 Horcajada-Molteni MN, Davicco MJ, Lebecque P, Coxam V, Young AA, Barlet JP. Amylin inhibits ovariectomy-induced bone loss in rats. J Endocrinol 2000; 165: 663–68.
122 Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res 2001; 16: 958–65.
123 Gutierrez-Rojas I, Lozano D, Nuche-Berenguer B, et al. Amylin exerts osteogenic actions with diff erent effi cacy depending on the diabetic status. Mol Cell Endocrinol 2013; 365 365: 309–15.
124 Borm AK, Klevesath MS, Borcea V, et al. The eff ect of pramlintide (amylin analogue) treatment on bone metabolism and bone density in patients with type 1 diabetes mellitus. Horm Metab Res 1999; 31: 472–75.
125 Nuche-Berenguer B, Moreno P, Esbrit P, et al. Eff ect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulinresistant states. Calcif Tissue Int 2009; 84: 453–61.
126 Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 2013; 92: 533–40.
127 US Food and Drug Administration. FDA Briefi ng Document. NDA 204042. Invokana (canaglifl ozin) Tablets. Jan 10, 2013.http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials%20/ Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334550.pdf (accessed Sept 3, 2015).
128 Kanis JA, Oden A, Johnell O, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007;18: 1033–46.
129 Schwartz AV, Vittinghoff E, Bauer DC, et al, and the Study of Osteoporotic Fractures (SOF) Research Group, and the Osteoporotic Fractures in Men (MrOS) Research Group, and the Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011; 305: 2184–92.
130 Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 2012;27: 301–08.
131 Martins D, Wolf M, Pan D, et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2007; 167: 1159–65.
132 Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012; 9: CD007146.
133 Donaldson MG, Palermo L, Ensrud KE, Hochberg MC, Schousboe JT, Cummings SR. Eff ect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the Fracture Intervention Trial. J Bone Miner Res 2012; 27: 1804–10.
134 Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 2008;19: 329–37.
135 Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 2009; 20: 887–94.
136 Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 1994;23: 43–54.
137 Tilling LM, Darawil K, Britton M. Falls as a complication of diabetes mellitus in older people. J Diabetes Complications 2006; 20: 158–62.



Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2022