Nuevas ideas, nuevas propuestas | 17 JUN 13

Fisiopatología de los síndromes coronarios agudos

Un apasionante artículo que pone al día el panorama de los conceptos más novedosos acerca de la enfermedad coronaria aguda.
Autor/a: Peter Libby The New England Journal of Medicine
INDICE:  1. Referencias | 2. Referencias
Referencias

 Referencias:

 

1Libby P. The molecular bases of the acute coronary syndromes. Circulation 1995;91:2844-2850
CrossRef | Web of Science | Medline
2Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation 2012;125:1147-1156
CrossRef | Web of Science | Medline
3Crea F, Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol 2013;61:1-11
CrossRef | Web of Science | Medline
4Falk E, Nakano M, Benton JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists' view. Eur Heart J 2013;34:719-728
CrossRef | Web of Science | Medline
5Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-235[Erratum, N Engl J Med 2011;365:2040.]
Free Full Text | Web of Science | Medline
6Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 2006;47:1655-1662
CrossRef | Web of Science | Medline
7Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;54:49-57
CrossRef | Web of Science | Medline
8Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008;5:Suppl 2:S2-S10
CrossRef | Web of Science | Medline
9Schoenhagen P, Stone GW, Nissen SE, et al. Coronary plaque morphology and frequency of ulceration distant from culprit lesions in patients with unstable and stable presentation. Arterioscler Thromb Vasc Biol 2003;23:1895-1900
CrossRef | Web of Science | Medline
10Glagov S, Weisenberg E, Zarins C, Stankunavicius R, Kolletis G. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375
Full Text | Web of Science | Medline
11Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP. Remodeling of coronary arteries in human and nonhuman primates. JAMA 1994;271:289-294
CrossRef | Web of Science | Medline
12Hochman JS, Lamas GA, Buller CE, et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med 2006;355:2395-2407
Free Full Text | Web of Science | Medline
13Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503-1516
Free Full Text | Web of Science | Medline
14Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481-3488
CrossRef | Web of Science | Medline
15Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J 2011;32:1251-1259
CrossRef | Web of Science | Medline
16Maldonado N, Kelly-Arnold A, Vengrenyuk Y, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol 2012;303:H619-H628
CrossRef | Web of Science | Medline
17Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013;61:1041-1051
CrossRef | Web of Science | Medline
18Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69:377-381
CrossRef | Web of Science | Medline
19Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate intersitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991;11:1223-1230
CrossRef | Medline
20Rekhter MD, Zhang K, Narayanan AS, Phan S, Schork MA, Gordon D. Type I collagen gene expression in human atherosclerosis: localization to specific plaque regions. Am J Pathol 1993;143:1634-1648
Web of Science | Medline
21Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493-2503
CrossRef | Web of Science | Medline
22Nikkari ST, O'Brien KD, Ferguson M, et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 1995;92:1393-1398
CrossRef | Web of Science | Medline
23Herman MP, Sukhova GK, Libby P, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 2001;104:1899-1904
CrossRef | Web of Science | Medline
24Sukhova GK, Schonbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999;99:2503-2509
CrossRef | Web of Science | Medline
25Shah PK, Falk E, Badimon JJ, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995;92:1565-1569
Web of Science | Medline
26Mach F, Schoenbeck U, Bonnefoy J-Y, Pober J, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 1997;96:396-399
CrossRef | Web of Science | Medline
27Dutta P, Courties G, Wei Y, et al. Myocardial infarction accelerates atherosclerosis. Nature 2012;487:325-329
CrossRef | Web of Science | Medline
28Chatzizisis YS, Baker AB, Sukhova GK, et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress co-localize with coronary atheromata with thin fibrous caps in pigs. Circulation 2011;123:621-630
CrossRef | Web of Science | Medline
29Koskinas KC, Sukhova GK, Baker AB, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol May 2 (Epub ahead of print).
30Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 2012;126:172-181
CrossRef | Web of Science | Medline
31Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 1998;97:2433-2444
CrossRef | Web of Science | Medline
32Fukumoto Y, Libby P, Rabkin E, et al. Statins alter smooth muscle cell accumulation and collagen content in established atheroma of Watanabe heritable hyperlipidemic rabbits. Circulation 2001;103:993-999
CrossRef | Web of Science | Medline
33Fukumoto Y, Deguchi JO, Libby P, et al. Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques. Circulation 2004;110:1953-1959
CrossRef | Web of Science | Medline
34Deguchi JO, Aikawa E, Libby P, et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 2005;112:2708-2715
CrossRef | Web of Science | Medline
35Schneider F, Sukhova GK, Aikawa M, et al. Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques. Circulation 2008;117:931-939
CrossRef | Web of Science | Medline
36Quillard T, Tesmenitsky Y, Croce K, et al. Selective inhibition of matrix metalloproteinase 13 (MMP-13) increases collagen content of established mouse atheromata. Arterioscler Thromb Vasc Biol 2011;31:2464-2472
CrossRef | Web of Science | Medline
37Ohayon J, Finet G, Gharib AM, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 2008;295:H717-H727
CrossRef | Web of Science | Medline
38Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues: implications for disorder
 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024