Modelos de simulación | 01 NOV 11

Usan la matemática para evaluar la prevención de epidemias

Un modelo original permite estudiar la dispersión del dengue y la fiebre amarilla.

Por Gabriel Stekolschik

En 1871, los habitantes de la ciudad de Buenos Aires padecieron una epidemia de fiebre amarilla que ocasionó la muerte de alrededor del 8% de los porteños.

Los decesos habrían sido muchísimos menos si las autoridades sanitarias de la época no hubieran creído que la peste estaba relacionada con las aglomeraciones humanas. Porque esta falsa idea llevó a desalojar conventillos y a promover evacuaciones que diseminaron la enfermedad y empeoraron la situación.

"Hicimos una simulación de cómo evolucionó el foco inicial de aquella epidemia y, comparando con documentos de la época, nuestro modelo matemático reproduce fielmente la distribución espacial de la enfermedad y su mortalidad diaria a lo largo del tiempo", comenta el doctor Hernán Solari, investigador del Conicet en el Grupo de Estudios Básicos e Interdisciplinarios (GEBI) de la Facultad de Ciencias Exactas y Naturales de la UBA. "Pero hay un segundo momento, cuando se disemina la epidemia, que nuestro modelo no pudo prever", completa.

Lo que las autoridades sanitarias de aquel entonces no podían saber y el modelo matemático de Solari no podía prever era el efecto de la movilidad humana sobre lo que se denomina "fuerza de la epidemia", un parámetro que refleja la cantidad de gente que se infecta diariamente durante un evento epidémico.

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2021