Revisión en profundidad | 05 ABR 21

Hiperbilirrubinemia indirecta neonatal

Metabolismo de la bilirrubina, métodos de pesquisa y tratamiento, e identificación de lactantes pre término con mayor susceptibilidad a injuria cerebral
Autor/a: Nicole B. Anderson, Kara L. Calkins  NeoReviews 2020;21;e749
INDICE:  1. Texto principal | 2. Texto principal
Texto principal

1. Burgos AE, Schmitt SK, Stevenson DK, Phibbs CS. Readmission for neonatal jaundice in California, 1991-2000: trends and implications. Pediatrics. 2008;121(4):e864–e869

2. Madan A, Huntsinger K, Burgos A, Benitz WE. Readmission for newborn jaundice: the value of the Coombs’ test in predicting the need for phototherapy. Clin Pediatr (Phila). 2004;43(1): 63–68

3. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297–316

4. Maisels MJ, Bhutani VK, Bogen D, Newman TB, Stark AR, Watchko JF. Hyperbilirubinemia in the newborn infant > or ¼35 weeks’ gestation: an update with clarifications. Pediatrics. 2009;124(4):1193–1198

5. Kaplan M, Renbaum P, Levy-Lahad E, Hammerman C, Lahad A, Beutler E. Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci USA. 1997;94(22):12128–12132

6. Ip S, Chung M, Kulig J, et al; American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pediatrics. 2004;114(1):e130–e153

7. Kaplan M, Hammerman C, Vreman HJ, Wong RJ, Stevenson DK. Hemolysis and hyperbilirubinemia in antiglobulin positive, direct ABO blood group heterospecific neonates. J Pediatr. 2010;157(5):772–777

8. Miyagi SJ, Collier AC. The development of UDPglucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos. 2011;39(5):912–919

9. Flaherman VJ, Maisels MJ; Academy of Breastfeeding Medicine. ABM clinical protocol #22: guidelines for management of jaundice in the breastfeeding infant 35 weeks or more of gestation-revised 2017. Breastfeed Med. 2017;12(5):250–257

10. Alonso EM, Whitington PF, Whitington SH, Rivard WA, Given G. Enterohepatic circulation of nonconjugated bilirubin in rats fed with human milk. J Pediatr. 1991;118(3):425–430

11. Chen S, Tukey RH. Humanized UGT1 mice, regulation of UGT1A1, and the role of the intestinal tract in neonatal hyperbilirubinemia and breast milk-induced jaundice. Drug Metab Dispos. 2018;46(11):1745–1755

12. Maruo Y, Morioka Y, Fujito H, et al. Bilirubin uridine diphosphateglucuronosyltransferase variation is a genetic basis of breast milk jaundice. J Pediatr. 2014;165(1):36–41 e1

13. Desjardins L, Blajchman MA, Chintu C, Gent M, Zipursky A. The spectrum of ABO hemolytic disease of the newborn infant. J Pediatr. 1979;95(3):447–449

14. Shahid R, Graba S. Outcome and cost analysis of implementing selective Coombs testing in the newborn nursery. J Perinatol. 2012;32(12):966–969

15. American College of Obstetrics and Gynecology. ACOG practice bulletin. Prevention of Rh D alloimmunization. Number 4, May 1999 (replaces educational bulletin Number 147, October 1990). Clinical management guidelines for obstetrician-gynecologists. Int J Gynaecol Obstet. 1999;66(1):63–70

16. Liumbruno GM, D’Alessandro A, Rea F, et al. The role of antenatal immunoprophylaxis in the prevention of maternal-foetal anti-Rh(D) alloimmunisation. Blood Transfus. 2010;8(1):8–16

17. Gottstein R, Cooke RW. Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn. Arch Dis Child Fetal Neonatal Ed. 2003;88(1):F6–F10

18. Louis D, More K, Oberoi S, Shah PS. Intravenous immunoglobulin in isoimmune haemolytic disease of newborn: an updated systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99(4):F325–F331

19. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42(3):267–278

20. Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, et al. Glucose-6- phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17(12):2069

21. Fu C, Luo S, Li Q, et al. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates. Sci Rep. 2018;8(1):833

22. Lee SH, George TI. The International Journal of Laboratory Hematology: 2007 to 2019. Int J Lab Hematol. 2019;41(suppl 1):4–5

23. Karayalcin G. Sickle cell anemia in the neonatal period. South Med J. 1979;72(4):492–493

24. McDonald SJ, Middleton P, Dowswell T, Morris PS. Effect oftiming of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev. 2013; (7):CD004074

25. Fogarty M, Osborn DA, Askie L, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and metaanalysis. Am J Obstet Gynecol. 2018;218(1):1–18

26. Tarnow-Mordi W, Morris J, Kirby A, et al; Australian Placental Transfusion Study Collaborative Group. Delayed versus immediate cord clamping in preterm infants. N Engl J Med. 2017;377(25):2445–2455

27. Katheria AC, Truong G, Cousins L, Oshiro B, Finer NN. Umbilical cord milking versus delayed cord clamping in preterm infants. Pediatrics. 2015;136(1):61–69

28. Berk MA, Mimouni F, Miodovnik M, Hertzberg V, Valuck J. Macrosomia in infants of insulin-dependent diabetic mothers. Pediatrics. 1989;83(6):1029–1034



Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024