Pautas de la Cleveland Clinic | 07 SEP 20

Coagulopatía asociada a COVID-19

La coagulopatía asociada al COVID-19 (CAC) y la coagulación intravascular diseminada son especialmente comunes y se asocian con enfermedad grave y muerte.
11
13
Autor/a: Simon R. Mucha, iddharth Dugar, Keith McCra et. al.  Cleveland Clinic Journal of Medicine Vol 87 - N°8 August 2020
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas
1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3

2. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; Mar 13;e200994. doi:10.1001/jamainternmed.2020.0994

3. Guan WJ, Ni ZY, Hu Y, et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18):1708–1720. doi:10.1056/NEJMoa2002032

4. Klok FA, Kruip MJ, van der Meer NJ, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191:145–147. doi:10.1016/j.thromres.2020.04.013

5. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020; 18(6):1421–1424. doi:10.1111/jth.14830

6. Jensen CT, Chahin A, Amin VD, et al. Qualitative slow blood fl ow in lower extremity deep veins on Doppler sonography: quantitative assessment and preliminary evaluation of correlation with subsequent deep venous thrombosis development in a tertiary care oncology center. J Ultrasound Med 2017; 36(9):1867–1874. doi:10.1002/jum.14220

7. Yin S, Huang M, Li D, Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis 2020; Apr 3:1–4. doi:10.1007/s11239-020-02105-8

8. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020; 506:145–148. doi:10.1016/j.cca.2020.03.022

9. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020; 58(7):1116– 1120. doi:10.1515/cclm-2020-0188

10. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4):844–847. doi:10.1111/jth.14768

11. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5

12. Maatman TK, Jalali F, Feizpour C, et al. Routine venous thromboembolism prophylaxis may be inadequate in the hypercoagulable state of severe coronavirus disease 2019. Crit Care Med 2020 May 27; 10.1097/ CCM.0000000000004466. doi:10.1097/CCM.0000000000004466

13. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med 2020; 382(17):e38. doi:10.1056/NEJMc2007575

14. Helms J, Tacquard D, Severac F, et al. High risk of thrombosis in patients in severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46(6):1089–1098. doi:10.1007/s00134-020-06062-x

15. Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in COVID-19: the fi rst autopsy series from New Orleans. MedRxiv 2020; April 10. doi:10.1101/2020.04.06.20050575

16. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med 2020 May 14:M20-2566. doi: 10.7326/M20-2566

17. Zhang T, Sun LX, Feng RE. Comparison of clinical and pathological features between severe acute respiratory syndrome and coronavirus disease 2019. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(6):496–502. Chinese. doi:10.3760/cma.j.cn112147-20200311-00312

18. Levi M, Scully M. How I treat disseminated intravascular coagulation. Blood 2018; 131(8):845–854. doi:10.1182/blood-2017-10-804096

19. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13(1):34–45. doi:10.1038/nri3345

20. Glas GJ, Van Der Sluijs KF, Schultz MJ, Hofstra JJ, Van Der Poll T, Levi M. Bronchoalveolar hemostasis in lung injury and acute respiratory distress syndrome. J Thromb Haemost 2013; 11(1):17–25. doi:10.1111/jth.12047

21. Pang RT, Poon CT, Chan KC, et al. Serum proteomic fi ngerprints of adult patients with severe acute respiratory syndrome. Clin Chem 2006; 52(3):421- 429. doi:10.1373/clinchem.2005.061689

22. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018; 9(5). doi:10.1128/mBio.01753-18

23. Jiang Y, Zhao G, Song N, et al. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect 2018; 7(1):77. doi:10.1038/s41426-018-0063-8

24. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation 2020; 141(22):1739–1741. doi:10.1161/CIRCULATIONAHA.120.047419

25. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8):875–879. doi:10.1038/nm1267

26. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky A. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4):586–590. doi:10.1007/s00134-020-05985-9

27. Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368(11):1033–1044. doi:10.1056/NEJMra1112830

28. Shatzel JJ, DeLoughery EP, Lorenz CU, et al. The contact activation system as a potential therapeutic target in patients with COVID-19. Res Pract Thromb Haemost 2020; 4(4):500–505. doi:10.1002/rth2.12349

29. Hutt Centeno E, Militello M, Gomes MP. Anti-Xa assays: what is their role today in antithrombotic therapy? Cleve Clin J Med 2019; 86(6):417–425. doi:10.3949/ccjm.86a.18029

30. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020 Apr 17. doi:10.1111/jth.14854

31. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 18(5):1023–1026. doi:0.1111/jth.14810

32. National Institutes of Health. Antithrombotic therapy in patients with COVID-19. Accessed July 10, 2020. https://www.covid19treatmentguidelines. nih.gov/antithrombotic-therapy/

33. Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with COVID-19. Chest guideline and expert panel report. Chest 2020 Jun 2. doi:10.1016/j.chest.2020.05.559

34. Pedraza García J, Valle Alonso J, Ceballos García P, Rico Rodríguez F, Aguayo López MÁ, Muñoz-Villanueva MDC. Comparison of the accuracy of emergency department-performed point-of-care-ultrasound (POCUS) in the diagnosis of lower-extremity deep vein thrombosis. J Emerg Med 2018; 54(5):656–664. doi:10.1016/j.jemermed.2017.12.020

35. Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10(11):1222–1226. doi:10.1038/nm1121

36. Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: do heparins have direct anti-infl ammatory effects? Thromb Haemost 2017; 117(3):437–444. doi:10.1160/TH16-08-0620

37. Lang J, Yang N, Deng J, et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One 2011 6(8):e23710. doi:10.1371/journal.pone.0023710

38. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; Mar 27. doi:10.1111/jth.14817

39. Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol 2020 May 5; S0735-1097(20)35218-9. doi: 10.1016/j.jacc.2020.05.001

40. Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost 2020; Apr 8; 10.1111/jth.14828. doi:10.1111/jth.14828

41. American Society of Hematology. COVID-19 resources. COVID-19 and coagulopathy: frequently asked questions. https://www.hematology.org/ covid-19/covid-19-and-coagulopathy. Accessed June 18, 2020.

42. Palareti G, Cosmi B, Legnani C, et al; DULCIS (D-dimer and ULtrasonography in Combination Italian Study) Investigators. D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study. Blood 2014; 124(2):196–203. doi:10.1182/ blood-2014-01-548065

43. Cohen AT, Harrington RA, Goldhaber SZ, et al; APEX Investigators. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N Engl J Med 2016; 375(6):534 –544. doi:10.1056/NEJMoa1601747

 

Comentarios

Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí

AAIP RNBD
Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2020