Efectos del metabolismo en la infancia y mediana edad | 06 ENE 20

Resistencia a insulina, diabetes y estado cognitivo

La asociación de diabetes tipo 2 de la mediana edad, hiperglucemia y resistencia a la insulina con la función cognitiva en la vejez ¿Son consecuencia de factores de la infancia que actúan separadamente sobre estos resultados?
INDICE:  1. Página 1 | 2. Referencias bibliográficas
Referencias bibliográficas

1. Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. InternMed J 42(5):484–491. https://doi.org/ 10.1111/j.1445-5994.2012.02758.x

2. Chatterjee S, Peters SAE, Woodward M et al (2015) Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39(2):300–307. https://


3. Nooyens ACJ, Baan CA, Spijkerman AMW, Verschuren WMM (2010) Type 2 diabetes and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Diabetes Care 33(9): 1964–1969. https://doi.org/10.2337/dc09-2038

4. Cukierman-Yaffe T, Gerstein HC, Williamson JD et al (2009) Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) trial. Diabetes Care 32(2):221–226. https://doi.org/10.2337/dc08-1153

5. Altschul DM, Starr JM, Deary IJ (2018) Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia 61(9): 1946–1955. https://doi.org/10.1007/s00125-018-4645-8

6. Livingston G, Sommerlad A, Orgeta Vet al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

7. Tuligenga RH, Dugravot A, Tabák AG et al (2014) Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol 2(3):228–235. https://doi.org/10.1016/S2213-8587(13)70192-X

8. Rawlings AM, Sharrett AR, Schneider ALC et al (2014) Diabetes in midlife and cognitive change over 20 years. Ann Intern Med 161(11):785–793. https://doi.org/10.7326/M14-0737

9. Saczynski JS, Jonsdottir MK, Garcia ME et al (2008) Cognitive impairment: an increasingly important complication of type 2 diabetes: the Age, Gene/Environment Susceptibility-Reykjavik Study. Am J Epidemiol 168(10):1132–1139. https://doi.org/10.1093/aje/kwn228

10. Marden JR, Mayeda ER, Tchetgen Tchetgen EJ, Kawachi I, Glymour MM (2017) High hemoglobin A1c and diabetes predict memory decline in the health and retirement study. Alzheimer Dis Assoc Disord 31(1):48–54. https://doi.org/10.1097/WAD.


11. Crane PK, Walker R, Hubbard RA et al (2013) Glucose levels and risk of dementia. N Engl JMed 369(6):540–548. https://doi.org/10. 1056/NEJMoa1215740

12. Lutski M, Weinstein G, Goldbourt U, Tanne D (2017) Insulin resistance and future cognitive performance and cognitive decline in elderly patients with cardiovascular disease. J Alzheimers Dis 57(2):633–643. https://doi.org/10.3233/JAD-161016

13. Spauwen PJJ, Kohler S, Verhey FRJ, Stehouwer CDA, van Boxtel MPJ (2013) Effects of type 2 diabetes on 12-year cognitive change: results from the Maastricht Aging Study. Diabetes Care 36(6):

1554–1561. https://doi.org/10.2337/dc12-0746 14. Sutherland GT, Lim J, Srikanth V, Bruce DG (2017) Epidemiological approaches to understanding the link between type 2 diabetes and dementia. J Alzheimers Dis 59(2):393–403.


15. Hagenaars SP, Gale CR, Deary IJ, Harris SE (2017) Cognitive ability and physical health: a Mendelian randomization study. Sci Rep 7(1):2651. https://doi.org/10.1038/s41598-017-02837-3

16. Hagenaars SP, Harris SE, Davies G et al (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol Psychiatry 21(11):1624–1632. https://doi.org/10.1038/mp.2015.


17. Larsson SC, Traylor M, Malik R et al (2017) Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ 359:j5375. https://doi.org/10.1136/BMJ.J5375

18. Østergaard SD, Mukherjee S, Sharp SJ et al (2015) Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study. PLoS Med 12(6):e1001841. https://doi.org/10.1371/journal.pmed.1001841

19. Tamayo T, Herder C, Rathmann W (2010) Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review. BMC Public Health 10(1):525. https://doi.org/ 10.1186/1471-2458-10-525

20. Richards SA (2003) Lifetime antecedents of cognitive reserve. J Clin Exp Neuropsychol 25(5):614–624. https://doi.org/10.1076/ jcen.25.5.614.14581

21. Wadsworth M, Kuh D, Richards M, Hardy R (2006) Cohort profile: the 1946 National Birth Cohort (MRC National Survey of Health and Development). Int J Epidemiol 35(1):49–54. https://doi.org/10.1093/ije/dyi201

22. Kuh D, Wong A, Shah I et al (2016) The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. Eur J Epidemiol 31(11):1135–1147. https://doi.org/10.1007/s10654-016-0217-8

23. Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR (2013) Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 36(3–4):242–250. https://doi.org/10.1159/


24. Pastorino S, Richards M, Hardy R et al (2015) Validation of selfreported diagnosis of diabetes in the 1946 British birth cohort. Prim Care Diabetes 9(5):397–400. https://doi.org/10.1016/j.pcd.2014. 05.003

25. British Medical Association and Royal Pharmaceutical Society of Great Britain (2011) British National Formulary (March edn). BMJ Books and Pharmaceutical Press, London

26. Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12):2191–2192. https://doi.org/10.2337/DIACARE.21.12.2191

27. Voight BF, Kang HM, Ding J et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8(8):e1002793. https://doi.org/10.1371/journal.pgen.1002793

28. Shah T, Engmann J, Dale C et al (2013) Population genomics of cardiometabolic traits: design of the University College London- London School of Hygiene and Tropical Medicine-Edinburgh- Bristol (UCLEB) Consortium. PLoS One 8(8):e71345. https://doi.org/10.1371/journal.pone.0071345

29. Talmud PJ, Cooper JA, Morris RWet al (2015) Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 64(5): 1830–1840. https://doi.org/10.2337/db14-1504

30. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44(9):981–990. https://doi.org/10.1038/ng.2383

31. Sanghera DK, Blackett PR (2012) Type 2 diabetes genetics: beyond GWAS. J Diabetes Metab 3(198):pii:6948. https://doi.org/10.4172/ 2155-6156.1000198

32. Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44(9): 991–1005. https://doi.org/10.1038/ng.2385

33. Euesden J, Lewis CM, O’Reilly PF, O’Reilly PF (2015) PRSice: polygenic risk score software. Bioinformatics 31(9):1466–1468. https://doi.org/10.1093/bioinformatics/btu848

34. Pigeon D (1964) Tests used in the 1954 and 1957 surveys. In: Douglas JWB (ed) The home and the school. Macgibbon and Kee, London (Appendix 1)

35. Hatch SL, Mishra G, Hotopf M, Jones PB, Kuh D (2009) Appraisals of stressors and common mental disorder from early to mid-adulthood in the 1946 British birth cohort. J Affect Disord 119(1):66–75. https://doi.org/10.1016/j.jad.2009.03.021

36. Ben-Shlomo Y, Kuh D (2002) A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol 31(2):285–293. https://doi.org/10.1093/intjepid/31.2.285

37. Streiner DL (2005) Finding our way: an introduction to path analysis. Can J Psychiatr 50(2):115–122. https://doi.org/10.1177/ 070674370505000207

38. Richards M, James S-N, Sizer A et al (2019) Identifying the lifetime cognitive and socioeconomic antecedents of cognitive state: seven decades of follow-up in a British birth cohort study. BMJ Open 9(4):24404. https://doi.org/10.1136/bmjopen-2018-024404

39. Lawlor DA, Tilling K, Davey Smith G (2017) Triangulation in aetiological epidemiology. Int J Epidemiol 45(6):1866–1886. https://doi.org/10.1093/ije/dyw314

40. Steptoe A, Marmot M (2002) The role of psychobiological pathways in socio-economic inequalities in cardiovascular disease risk. Eur Heart J 23(1):13–25. https://doi.org/10.1053/euhj.2001.2611

41. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14(10):591–604. https://doi.org/10.1038/s41574-018- 0048-7

42. Lu C-H, Yang C-Y, Li C-Y, Hsieh C-Y, Ou H-T (2018) Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: a population-based longitudinal study. Diabetologia 61(3):562–573. https://doi.org/10. 1007/s00125-017-4499-5



Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí