eHealth | 15 OCT 19

Dispositivos móviles y salud

Revisión sobre el uso de dispositivos móviles en salud
4
3
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas

Referencias

1. Pew Research Center Global AttitudesProject. Smartphone ownership is growingrapidly around the world, but not alwaysequally. February 5, 2019 (https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/).

2. Buttorff C, Ruder T, Bauman M. Multiple chronic conditions in the United States. Santa Monica, CA: RAND, 2017 (http://www.rand.org/pubs/tools/TL221.html).

3. Agency for Healthcare Research andQuality. Multiple chronic conditions chartbook. April 2014 (https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf).4. Apple. Apple Watch Series

4 (https://www.apple.com/apple-watch-series-4/).

5. Goel M, Saba E, Stiber M, et al. SpiroCall: measuring lung function over a phonecall. In: Proceedings of the 2016 CHI Conference on Human Factors in ComputingSystems — CHI ’16. Santa Clara, CA: ACMPress, 2016 (http://dl.acm.org/citation.cfm?doid=2858036.2858401).

6. Coppetti T, Brauchlin A, Müggler S, etal. Accuracy of smartphone apps for heartrate measurement. Eur J Prev Cardiol 2017;24:1287-93.

7. Statista. Wearable user penetrationrate in the United States, in 2017, by age(https://www.statista.com/statistics/739398/us-wearable-penetration-by-age/).

8. Saleheen N, Ali AA, Hossain SM, et al.puffMarker: a multi-sensor approach forpinpointing the timing of first lapse insmoking cessation. Proc ACM Int ConfUbiquitous Comput 2015;2015:999-1010.

9. Empatica. Embrace2 seizure detection (https://www.empatica.com/).

10. AliveCor. KardiaMobile (https://www.alivecor.com/).

11. MC10. BioStamp nPoint: wearablehealthcare technology & devices (https://www.mc10inc.com).

12. Gao J, Ertin E, Kumar S, al’Absi M.Contactless sensing of physiological signals using wideband RF probes. In: FortySeventh Asilomar Conference on Signals,Systems & Computers, Pacific Grove, CA,November 3–6, 2013. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2013:86-90.

13. Gonçalves C, Ferreira da Silva A,Gomes J, Simoes R. Wearable e-textiletechnologies: a review on sensors, actuators and control elements. Inventions2018;3:

14 (https://www.mdpi.com/2411-5134/3/1/14).14. McLaren R, Joseph F, Baguley C, Taylor D. A review of e-textiles in neurological rehabilitation: how close are we?J Neuroeng Rehabil 2016;13:59 .

15. Hafezi H, Robertson TL, Moon GD,Au-Yeung KY, Zdeblick MJ, Savage GM. Aningestible sensor for measuring medication adherence. IEEE Trans Biomed Eng2015;62:99-109.

16. Majumder S, Aghayi E, Noferesti M, etal. Smart homes for elderly healthcare —recent advances and research challenges.Sensors (Basel) 2017;

17(11):E2496.17. Array of Things. Introductory video(https://arrayofthings.github.io/).

18. Shiffman S, Stone AA, Hufford MR.Ecological momentary assessment. AnnuRev Clin Psychol 2008;4:1-32.

19. May M, Junghaenel DU, Ono M, StoneAA, Schneider S. Ecological momentaryassessment methodology in chronic painresearch: a systematic review. J Pain 2018;19:699-716.

20. Walz LC, Nauta MH, Aan Het Rot M.Experience sampling and ecological momentary assessment for studying the dailylives of patients with anxiety disorders:a systematic review. J Anxiety Disord2014;28:925-37.

21. Shiffman S. Ecological momentaryassessment. In: Sher KJ, ed. The Oxfordhandbook of substance use and substanceuse disorders. Vol. 2. New York: Oxford University Press, October 2016:466-512.

22. Brooks GC, Vittinghoff E, Iyer S, et al.Accuracy and usability of a self-administered 6-minute walk test smartphoneapplication. Circ Heart Fail 2015;8:905-13.

23. Singh S, Xu W. Robust detection ofParkinson’s disease using harvestedsmartphone voice data: a telemedicine approach. Telemed J E Health 2019 April 26(Epub ahead of print).

24. Moore RC, Swendsen J, Depp CA. Applications for self-administered mobilecognitive assessments in clinical research: a systematic review. Int J MethodsPsychiatr Res 2017;26(4):e1562.

25. Coravos A, Khozin S, Mandl KD. Developing and adopting safe and effectivedigital biomarkers to improve patient outcomes. NPJ Digit Med 2019;2(1):14.

26.. Noah B, Keller MS, Mosadeghi S, etal. Impact of remote patient monitoringon clinical outcomes: an updated metaanalysis of randomized controlled trials.NPJ Digit Med 2018;1:20172.

27. Luik AI, Kyle SD, Espie CA. Digital cognitive behavioral therapy (dCBT) forinsomnia: a state-of-the-science review.Curr Sleep Med Rep 2017;3:48-56.

28. Pear Therapeutics. Redefining medicine: prescription digital therapeutics forthe treatment of serious disease (https://peartherapeutics.com/).

29. Akili Interactive. Akili achieves primary efficacy endpoint in pediatricADHD pivotal trial. December 4, 2017(https://www.akiliinteractive.com/news-collection/akili-achieves-primary-efficacy-endpoint-in-pediatric-adhd-pivotal-trial).

30. Omada Health. Digital therapeutics for chronic disease (https://www.omadahealth.com/).

31. Barrett MA, Humblet O, Marcus JE, etal. Effect of a mobile health, sensor-driven asthma management platform onasthma control. Ann Allergy Asthma Immunol 2017;119(5):415.e1-421.e1.

32. Pourmand A, Davis S, Marchak A,Whiteside T, Sikka N. Virtual reality as aclinical tool for pain management. CurrPain Headache Rep 2018;22:53.

33. Freespira. A solution for panic attacktreatment: FDA-cleared, drug-free (https://freespira.com/).

34. FDA clears mobile medical app tohelp those with opioid use disorder stayin recovery programs. News release of theFood and Drug Administration, SilverSpring, MD, December 10, 2018 (http://www.fda.gov/news-events/press-announcements/fda-clears-mobile-medical-app-help-those-opioid-use-disorder-stay-recovery-programs).

35. Teva announces FDA approval of firstand only digital inhaler with built-in sensors — ProAir Digihaler (albuterol sulfate117 mcg) inhalation powder. Press releaseof Teva Pharmaceutical Industries, PetahTikva, Israel, December 21, 2018 (https://ir.tevapharm.com/investors/press-releases/press-release-details/2018/Teva-Announces-FDA-Approval-of-First-and-Only-Digital-Inhaler-with-Built-In-Sensors--ProAir-Digihaler-albuterol-sulfate-117-mcg-Inhalation-Powder/default.aspx).

36. Sheridan K. Prescription apps aregaining ground — and drug makers’backing — as digital therapeutics. Boston: STAT, July 25, 2018 (https://www.statnews.com/2018/07/25/phone-apps-digital-therapeutics/).

37. Rovini E, Maremmani C, Cavallo F.How wearable sensors can support Parkinson’s disease diagnosis and treatment:a systematic review. Front Neurosci 2017;11:555.

38. Vargas-Cuentas NI, Roman-GonzalezA, Gilman RH, et al. Developing an eyetracking algorithm as a potential tool forearly diagnosis of autism spectrum disorder in children. PLoS One 2017;12(11):e0188826.

39. He L, Cao C. Automated depressionanalysis using convolutional neural networks from speech. J Biomed Inform2018;83:103-11.

40. Simblett S, Greer B, Matcham F, et al.Barriers to and facilitators of engagementwith remote measurement technology formanaging health: systematic review andcontent analysis of findings. J Med Internet Res 2018;20(7):e10480.

41. Inside wearables: how the science ofhuman behavior change offers the secretto long-term. Endeavour Partners, 2017(https://medium.com/@endeavourprtnrs/inside-wearable-how-the-science-of-human-behavior-change-offers-the-secret-to-long-term-engagement-a15b3c7d4cf3).

42. Whitney RL, Ward DH, Marois MT,Schmid CH, Sim I, Kravitz RL. Patientperceptions of their own data in mHealthtechnology-enabled N-of-1 trials forchronic pain: qualitative study. JMIRMhealth Uhealth 2018;6(10):e10291.

43. Research 2 Guidance. mHealth economics — how mHealth publishers aremonetizing their apps. 2018 (https://research2guidance.com/product/mhealth-economics-how-mhealth-app-publishers-are-monetizing-their-apps/).

44. HealthIT.gov. Notice of proposedrulemaking to improve the interoperability of health information. 2019 (https://www.healthit.gov/topic/laws-regulation-and-policy/notice-proposed-rulemaking-improve-interoperability-health).

45. Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR:a standards-based, interoperable appsplatform for electronic health records.J Am Med Inform Assoc 2016;23:899-908.

46. Milani RV, Bober RM, Lavie CJ. Therole of technology in chronic disease care.Prog Cardiovasc Dis 2016;58:579-83.

47. Adler-Milstein J, Nong P. Early experiences with patient generated health data:health system and patient perspectives.J Am Med Inform Assoc 2019 April 22(Epub ahead of print).

48. FDA Center for Devices and Radiological Health. 510(k) Clearances. October2018 (https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/510kClearances/default.htm).

49. FDA Center for Devices and Radiological Health. Digital health software precertification (Pre-Cert) program. October2018 (https://www.fda.gov/medicaldevices/digitalhealth/digitalhealthprecertprogram/default.htm).

50. Wen D, Zhang X, Liu X, Lei J. Evaluating the consistency of current mainstreamwearable devices in health monitoring:a comparison under free-living conditions.J Med Internet Res 2017;19(3):e68.

51. Perry B, Herrington W, Goldsack JC,et al. Use of mobile devices to measureoutcomes in clinical research, 2010-2016:a systematic literature review. Digit Biomark 2018;2:11-30.

52. Open mHealth. Open source data integration tools (http://www.openmhealth.org).

53. Sage Bionetworks. Parkinson’s disease digital biomarker DREAM challenge.2017 (https://www.synapse.org/#!Synapse:syn8717496/wiki/422884).

54. Express Scripts. Express Scripts simplifies digital health technology marketplace for consumers and payers. May 16,2019 (https://www.prnewswire.com/news-releases/express-scripts-simplifies-digital-health-technology-marketplace-for-consumers-and-payers-300851128.html).

55. Xcertia. mHealth app guidelines(https://www.xcertia.org/).

56. NODE.Health home page (http://nodehealth.org/).

57. Day S, Zweig M. 2018 Year end funding report: is digital health in a bubble?Rock Health, 2019 (https://rockhealth.com/reports/2018-year-end-funding-report-is-digital-health-in-a-bubble/).

58. Centers for Medicare & Medicaid Services. Medicare program: revisions topayment policies under the physician feeschedule and other revisions to Part B forCY 2018: Medicare Shared Savings Program requirements: and Medicare Diabetes Prevention Program. Fed Regist 2017;82(219):52976 (https://www.federalregister.gov/documents/2017/11/15/2017-23953/medicare-program-revisions-to-payment-policies-under-the-physician-fee-schedule-and-other-revisions).

59. Richman B. Health regulation for thedigital age — correcting the mismatch.N Engl J Med 2018;379:1694-5.

60. Clinical Trials Transformation Initiative. CTTI recommendations: decentralizedclinical trials. 2018 (https://www.ctti-clinicaltrials.org/sites/www.ctti-clinicaltrials.org/files/dct_recommendations_final.pdf).

61. ResearchKit. Introducing ResearchKit(http://researchkit.org/).

62. ResearchStack: an SDK for buildingresearch study apps on Android (http://researchstack.org/).

63. Tidepool. The place for your diabetes data (https://www.tidepool.org/users).

64. Rosenbaum L. Swallowing a spy —the potential uses of digital adherencemonitoring. N Engl J Med 2018;378:101-3.

65. Baron KG, Abbott S, Jao N, Manalo N,Mullen R. Orthosomnia: are some patients taking the quantified self too far?J Clin Sleep Med 2017;13:351-4.

66. Korinek EV, Phatak SS, Martin CA, etal. Adaptive step goals and rewards: a longitudinal growth model of daily steps fora smartphone-based walking intervention. J Behav Med 2018;41:74-86.

67. Rainie L. Digital divides — feedingAmerica. Washington, DC: Pew ResearchCenter, February 9, 2017 (http://www.pewinternet.org/2017/02/09/digital-divides-feeding-america/).

68. StatCounter. Mobile operating systemmarket share in United States of America:June 2018-June 2019. Global Stats. 2019(http://gs.statcounter.com/os-market-share/mobile/united-states-of-america).

69. Comscore. iPhone users earn higherincome, engage more on apps than Android users. August 14, 2014 (http://www.comscore.com/Insights/Infographics/iPhone-Users-Earn-Higher-Income-Engage-More-on-Apps-than-Android-Users).

70. Centers for Disease Control and Prevention. Health Literacy: understanding literacy & numeracy. 2018 (https://www.cdc.gov/healthliteracy/learn/UnderstandingLiteracy.html).

71. Rampey BD, Finnegan R, GoodmanM, et al. Skills of U.S. unemployed, young,and older adults in sharper focus: resultsfrom the Program for the International Assessment of Adult Competencies (PIAAC)2012/2014: first look (NCES 2016-039rev).Washington, DC: Department of Education, March 2016 (https://nces.ed.gov/pubs2016/2016039rev.pdf).

72. Pasquale F. The black box society: thesecret algorithms that control money andinformation. Cambridge, MA: HarvardUniversity Press, 2015.

73. Consumer Reports. Guide to digitalsecurity & privacy. 2019 (https://www.consumerreports.org/digital-security/online-security-and-privacy-guide/).

74. Hill D. Project HealthDesign: rethinking the power and potential of personalhealth records. Princeton, NJ: RobertWood Johnson Foundation, 2015 (https://www.rwjf.org/en/library/research/2010/10/project-healthdesign--rethinking-the-power-and-potential-of-pers.html).

75. Toscos T, Drouin M, Pater J, FlanaganM, Pfafman R, Mirro MJ. Selection biasesin technology-based intervention research:patients’ technology use relates to bothdemographic and health-related inequities. J Am Med Inform Assoc 2019 June 7(Epub ahead of print).

76. Kumar S, Nilsen WJ, Abernethy A, etal. Mobile health technology evaluation:the mHealth evidence workshop. Am JPrev Med 2013;45:228-36.

77. Zhang X, Hailu B, Tabor DC, et al.Role of health information technology inaddressing health disparities: patient, clinician, and system perspectives. Med Care2019;57:Suppl 2:S115-S120.

78. Sheon AR, Van Winkle B, Solad Y,Atreja A. An algorithm for digital medicine testing: a NODE.Health perspectiveintended to help emerging technologycompanies and healthcare systems navigate the trial and testing period prior tofull-scale adoption. Digit Biomark 2018;2:139-54.

79. Makhni S, Atreja A, Sheon A, VanWinkle B, Sharp J, Carpenter N. The broken health information technology innovation pipeline: a perspective from theNODE health consortium. Digit Biomark2017;1:64-72 (https://www.karger.com/Article/FullText/479017).

80. Pauwels E, Denton SW. Searching forprivacy in the Internet of Bodies. WilsonQuarterly. Spring 2018 (https://www.wilsonquarterly.com/quarterly/living-with-artificial-intelligence/searching-for-privacy-in-the-internet-of-bodies/).

 

Comentarios

Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí