Más que síndrome metabólico | 04 AGO 19

Síndrome circadiano: una nueva entidad

Se ha implicado al síndrome circadiano en varias enfermedades crónicas, entre ellas la diabetes tipo 2 y la enfermedad cardiovascular
Autor: Zimmet P, Alberti K Journal of Internal Medicine, 2019
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas

1 Kuhlman SJ, Craig LM, Duffy JF. Introduction to chronobiology. Cold Spring Harb Perspect Biol 2018; 10: a033613.

2 Top D, Young MW. Coordination between differentially regulated circadian clocks generates rhythmic behavior. Cold Spring Harb Perspect Biol 2018; 10: a033589.

3 Panda S. The arrival of circadian medicine. Nat Rev Endocrinol 2019; 1.

4 Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014; 264: 76–87.

5 Kalsbeek A, Scheer F. A, Perreau-lenz S., et al. Circadian disruption and SCN control of energy metabolism. FEBS Lett 2011; 585: 1412–26.

6 Ruger M, Scheer F. Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord 2009; 10: 245–60.

7 Li M-D, Li C-M, Wang Z. The role of circadian clocks in metabolic disease. Yale J Biol Med 2012; 85: 387.

8 Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2014; 2: 56–64.

9 Cleary C et al. Antidepressive-like effects of rapamycin in animal models: implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Res Bull 2008; 76: 469–73.

10 Diamond J. The double puzzle of diabetes. Nature 2003; 423: 599.

11 Dominoni DM, Borniger JC, Nelson RJ. Light at night, clocks and health: from humans to wild organisms. Biol Let 2016; 12. https://doi.org/10.1098/rsbl.2016.0015

12 Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J Exp Biol 2018. https://doi.org/10.1242/jeb.156893

13 Versteeg RI et al. Nutrition in the spotlight: metabolic effects of environmental light. Proc Nutr Soc 2016; 75: 451– 63.

14 Stevenson TJ et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc Biol Sci 2015. https://doi.org/10.1098/rspb.2015.1453

15 Qian J, Caputo R, Morris CJ, Wang W, Scheer FA. Circadian misaligment increases the desire for food intake in chronic shift workers. Sleep 2018; 41: A17.

16 Qian JY, Scheer F. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab 2016; 27: 282–93.

17 Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol 2019; 15: 75–89.

18 Noordam R et al. Associations of outdoor temperature, bright sunlight and cardiometabolic traits in two European population-based cohorts. J Clin Endocrinol Metab 2019. https://doi.org/10.1210/jc.2018-02532

19 Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 2019. https://doi.org/10.


20 Sato S, Sassone-Corsi P. Circadian and epigenetic control of depression-like behaviors. Curr Opin Behav Sci 2019; 25: 15–22.

21 Jha PK, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol 2015; 418: 74–88.

22 Bilu C et al. Diurnality, type 2 diabetes, and depressive-like behavior. J Biol Rhythms 2018; 34.1: 69–83. https://doi. org/10.1177/0748730418819373

23 Staels B. When the Clock stops ticking, metabolic syndrome explodes. Nat Med 2006; 12: 54.

24 Vgontzas AN, Bixier EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev 2005; 9: 211–24.

25 Gramaglia C et al. Increased risk of metabolic syndrome in antidepressants users: a mini review. Front Psychiatry 2018; 9. https://doi.org/10.3389/fpsyt.2018.00621

26 Javeed N, Matveyenko AV. Circadian etiology of type 2 diabetes mellitus. Physiology 2018; 33: 138–50.

27 Yaffe K. Metabolic syndrome and cognitive disorders: is the sum greater than its parts? Alzheimer Dis Assoc Disord 2007; 21: 167–71.

28 McIntyre RS et al. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann Clin Psychiatry 2007; 19: 257–64.

29 Reinke H, Asher G. Circadian clock control of liver metabolic functions. Gastroenterology 2016; 150: 574–80.

30 Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med 2007; 8: 668–80.

31 Skene DJ et al. Separation of circadian-and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc Natl Acad Sci 2018; 115: 7825–30.

32 Dibner C, Schibler U. Circadian timing of metabolism in animal models and humans. J Intern Med 2015; 277: 513–27.

33 Gale JE et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic betacell loss and dysfunction. J Biol Rhythms 2011; 26: 423–33.

34 Kadono M et al. Various patterns of disrupted daily rest-activity rhythmicity associated with diabetes. J Sleep Res 2016; 25: 426–37.

35 Rakshit K, Thomas AP, Matveyenko AV. Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Curr Diab Rep 2014; 14: 8.

36 Wyse CA et al. Adverse metabolic and mental health outcomes associated with shiftwork in a population-based study of 277,168 workers in UK biobank. Ann Med 2017; 49: 411–20.

37 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J Appl Physiol 2005; 99: 2008–19.

38 Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37 1595–607.

39 Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet 2005; 366: 1059–62.

40 Grundy SM. Does the metabolic syndrome exist?.Diabetes Care 2006; 29: 1689–92.

41 Grant PJ. The clock stopped, never to go again... Diabetes and Vascular Disease Research 2008; 5: 75.

42 Prasai MJ, George JT, Scott EM. Molecular clocks, type 2 diabetes and cardiovascular disease. Diab Vasc Dis Res 2008; 5: 89–95.

43 Reaven GM. The metabolic syndrome: time to get off the merry-go-round? J Intern Med 2011; 269: 127–36.

44 Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 2006; 23:469–80.

45 Alberti K et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120: 1640–5.

46 Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 2009; 5: 401.

47 Barres R, Zierath JR. DNA methylation in metabolic disorders. Am J Clin Nutr 2011; 93: 897S–900S.

48 Keating ST, Plutzky J, El-Osta A. Epigenetic changes in diabetes and cardiovascular risk. Circ Res 2016; 118: 1706– 22.

49 Block T, El-Osta A. Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis 2017; 266: 31–40.

50 Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61: 6–20.

51 Kaspi A et al. Diet during pregnancy is implicated in the regulation of hypothalamic RNA methylation and risk of obesity in offspring. Mol Nutr Food Res 2018; 62: e1800134.


52 Khurana I et al. DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring’s risk of obesity in Psammomys obesus. Int J Obes (Lond) 2016; 40: 1079–88.

53 Kahn R. The metabolic syndrome (emperor) wears no clothes. Diabetes Care 2006; 29: 1693–6.

54 Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal. Diabetologia 2005; 48: 1684–99.

55 Zimmet PZ, Alberti KGM. Epidemiology of diabetes—status of a pandemic and issues around metabolic surgery. Diabetes Care 2016; 39: 878–83.

56 Cedernaes J et al. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv 2018; 4. ttps: // doi.org/10.1126/sciadv.aar8590

57 Van Laake LW, Luscher TF, Young ME. The circadian clock in cardiovascular regulation and disease: lessons from the Nobel prize in physiology or medicine 2017. Eur Heart J 2018; 39: 2326–9.

58 Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128: 2157–67.

59 Shaw E, Tofler GH. Circadian rhythm and cardiovascular disease. Curr Atheroscler Rep 2009; 11: 289–95.

60 Black N et al. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm 2018; 16: 298–307. https://doi.org/10.1016/j.hrthm.2018.08.026

61 Durgan DJ, Young ME. The cardiomyocyte circadian clock emerging roles in health and disease. Circ Res 2010; 106: 647–58.

62 Fabbian Fet al.Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm–dependent physiologic and pathophysiologic mechanisms. Chronobiol Int 2013; 30: 17–30.

63 Banegas JR et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 2018; 378: 1509–20.

64 Hassan MO et al. Non-dipping blood pressure in the metabolic syndrome among arabs of the oman family study. Obesity 2007; 15: 2445–53.

65 Schein AS, Kerkhoff AC, Coronel CC, Plentz RD, Sbruzzi G. Continuous positive airway pressure reduces blood pressure in patients with obstructive sleep apnea; a systematic review and meta-analysis with 1000 patients. J Hypertens 2014; 32: 1762–73.

66 Casitas R et al. The effect of treatment for sleep apnoea on determinants of blood pressure control. Eur Respir J 2017; 50: 1701261.

67 Hermida RC et al. Circadian rhythms in blood pressure regulation and optimization of hytertension treatment with ACE inhibitor and ARB medications. Am J Hypertens 2011;24: 383–91.

68 de la Sierra A et al. Prevalence and factors associated with circadian blood pressure patterns in hypertensive patients. Hypertension 2009; 53: 466–72.

69 Adamovich Y et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 2014; 19: 319–30.

70 Gnocchi D, Pedrelli M, Hurt-Camejo E, Parini P. Lipids around the clock: focus on circadian rhythms and lipid metabolism. Biology 2015; 4: 104.

71 Bray MS, Young ME. Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev 2007; 8: 169–81.

72 Froy O. Metabolism and circadian rhythms—implications for obesity. Endocr Rev 2010; 31: 1–24.

73 Stenvers DJ et al. Diurnal rhythms in the white adipose tissue transcriptome are disturbed in obese individuals with type 2 diabetes compared with lean control individuals.

Diabetologia 2019; 62: 704–16. https://doi.org/10.1007/s00125-019-4813-5

74 Zimmet PZ, Wall JR, Rome R, Stimmler L, Jarrett RJ. Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone, and non-esterified. BMJ

1974; 1: 485–8.

75 Panda S. Circadian physiology of metabolism. Science 2016; 354: 1008–15.

76 Coomans CP et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 2013; 62: 1102–8.

77 Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014; 3: 372–83.

78 Yu JS, Marsh S, Hu JB, Feng WK, Wu CD. The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract 2016. https://doi.org/10.1155/2016/2862173

79 Egede LE, Zheng D, Simpson K. Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. Diabetes Care 2002; 25: 464–70.

80 Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes – a meta-analysis. Diabetes Care 2001; 24: 1069–78.

81 Campayo A, Gomez-Biel CH, Lobo A. Diabetes and depression. Curr Psychiatry Rep 2011; 13: 26–30.

82 Golden SH et al. Examining a bidirectional association between depressive symptoms and diabetes. JAMA 2008; 299: 2751–9.

83 Bilu C, Einat H, Kronfeld-Schor N. Utilization of diurnal rodents in the research of depression. Drug Dev Res 2016; 77: 336–45.

84 Kronfeld-Schor N, Einat H. Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 2012; 62: 101–14.

85 Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 2019; 20: 49–65.

86 McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 2007; 114: 222–32.

87 McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiat 2013; 74: 242–9.

88 Brouwer A et al. Light therapy for better mood and insulin sensitivity in patients with major depression and type 2 diabetes: a randomised, double-blind, parallel-arm trial. BMC Psychiatry 2015; 15. https://doi.org/10.1186/ s12888-015-0543-5

89 Dietzel M, Saletu B, Lesch OM, Sieghart W, Schjerve M. Light treatment in depressive illness. Polysomnographic, psychometric and neuroendocrinological findings. Eur Neurol 1986; 25: 93–103.

90 Even C, Schroder CM, Friedman S, Rouillon F. Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 2008; 108: 11–23.

91 Golden RN et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 2005; 162: 656–62.

92 Kripke DF. Light treatment for nonseasonal depression: speed, efficacy, and combined treatment. J Affect Disord 1998; 49: 109–17.

93 Oldham MA, Ciraulo DA. Bright light therapy for depression: a review of its effects on chronobiology and the autonomic nervous system. Chronobiol Int 2014; 31: 305–19.

94 Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr 2005; 10: 647–63; quiz 672.

95 Wirz-Justice A. Beginning to see the light. Arch Gen Psychiatry 1998; 55: 861–2.

96 Yamada N, Martin-Iverson MT, Daimon K, Tsujimoto T, Takahashi S. Clinical and chronobiological effects of light therapy on nonseasonal affective disorders. Biol Psychiatry 1995; 37: 866–73.

97 Almoosawi S et al. Chronotype: implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv Nutr 2018; 10: 30–42.

98 El-Osta A et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205: 2409–17.

99 Okabe J et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110: 1067– 76.

100 Barnett M, Collier GR, Zimmet P, Odea K. The effect of restricting energy-intake on diabetes in Psammomys-obesus. Int J Obes Relat Metab Disord 1994; 18: 789–94.

101 Schmidt-Nielsen K, Haines HB, Hackel DB. Diabetes mellitus in the sand rat induced by standard laboratory diets. Science 1964; 143: 689–90.

102 Kalman R, Ziv E, Lazarovici G, Shafrir E. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. London: Academic Press, 2012; 1171–90.

103 Kaiser N, Cerasi E, Leibowitz G. Diet-induced diabetes in the sand rat (Psammomys obesus) In Animal Models in Diabetes Research. Totowa, NJ: Humana Press, 2012; (pp. 89–102).

104 Kronfeld-Schor N, Visser ME, Salis L, van Gils JA. Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci 2017; 372. https://doi.org/10.1098/rstb.2016.0248

105 Einat H, Kronfeld-Schor N, Eilam D. Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res 2006; 173: 153–7.

106 Ashkenazy T, Einat H, Kronfeld-Schor N. Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 2009; 201: 343–6.

107 Ashkenazy T, Einat H, Kronfeld-Schor N. We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 2009; 12: 83–93.

108 Krivisky K, Einat H, Kronfeld-Schor N. Effects of morning compared with evening bright light administration to ameliorate short-photoperiod induced depression- and anxiety-like behaviors in a diurnal rodent model. J Neural Transm 2012; 119: 1241–8.

109 Ashkenazy-Frolinger T, Einat H, Kronfeld-Schor N. Diurnal rodents as an advantageous model for affective disorders: novel data from diurnal degu (Octodon degus). J Neural Transm 2013; 35–45.

110 Tal-Krivisky K, Kronfeld-Schor N, Einat H. Voluntary exercise enhances activity rhythms and ameliorates anxiety-and depression-like behaviors in the sand rat model of circadian rhythm related mood changes. Physiol Behav 2015; 151: 441–7.



Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí

Contenidos relacionados
Los editores le recomiendan continuar con las siguientes lecturas: