La conducta heredada y aprendida | 15 MAR 19

¿Qué son los circuitos de defensa?

Las conductas defensivas innatas se generan de manera automática ante una situación apremiante del entorno: constituyen los reflejos y las reacciones fijas
Autor/a: LeDoux J, Daw N Fuente: Nature Reviews Neuroscience 19(5):269-282, May 2018 Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour.
INDICE:  1. Página 1 | 2. Página 2
Página 2


1. Emerson, R. W. in The Selected Lectures of Ralph Waldo Emerson (eds Bosco, R. A. & Myerson, J.) 301 (Univ. of Georgia Press, 1863). 

2. Schneirla, T. C. in Nebraska Symposium on Motivation (ed. Jones, M. R.) 1–42 (Univ. of Nebraska Press, 1959).

3. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

4. LeDoux, J. E. Coming to terms with fear. Proc. Natl Acad. Sci. USA 111, 2871–2878 (2014). This article provides a summary of the issues related to describing defensive behaviour in terms of fear versus threat processing.

5. Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prevost, C. The ecology of human fear: survival optimization and the nervous system. Front. Neurosci. 9, 55 (2015).

6. Emery, N. J. & Amaral, D. G. in in Cognitive Neuroscience of Emotion Series in Affective Science. (eds Lane, R. D. & Nadel, L.) 156–191 (Oxford Univ. Press, 2000).

7. Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

8. LeDoux, J. E. Anxious: Using the Brain to Understand and Treat Fear and Anxiety. (Viking, 2015).

9. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

10. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998). This paper presents a clear statement of the difference between action and habit, and their neural substrates, in appetitive conditioning.

11. Bach, D. R. & Dayan, P. Algorithms for survival: a comparative perspective on emotions. Nat. Rev. Neurosci. 18, 311–319 (2017).

12. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

13. Dickinson, A. Action and habits: the development of behavioural autonomy. Phil. Trans. R. Soc. B Biol Sci. 308, 67–78 (1985).

14. Dickinson, A. in Animal Learning and Cognition (ed. Mackintosh, N. J.) 45–79 (Academic Press, 1994).

15. Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015). This paper describes defensive behaviour in a neuroethological context.

16. Yeomans, J. S., Li, L., Scott, B. W. & Frankland, P. W. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci. Biobehav Rev. 26, 1–11 (2002). REVIEWS NATURE REVIEWS | NEUROSCIENCE ADVANCE ONLINE PUBLICATION | 11 © 2 0 1 8 M a c mil l a n P u bli s h e r s Li mit e d, p a rt o f S p ri n g e r N a t u r e. Al l ri g h t s r e s e r v e d. © 2 0 1 8 M a c mil l a n P u bl i s h e r s Li mit e d, p a rt o f S p ri n g e r N a t u r e. All ri g h t s r e s e r v e d.

17. Leaton, R. N. & Cranney, J. Potentiation of the acoustic startle response by a conditioned stimulus paired with acoustic startle stimulus in rats. J. Exp. Psychol. Anim. Behav. Process 16, 279–287 (1990).

18. Brown, J. S., Kalish, H. I. & Farber, I. E. Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psych. 41, 317–328 (1951).

19. Davis, M. in in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 255–306 (Wiley-Liss, 1992).

20. Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).

21. Bolles, R. C. & Fanselow, M. S. A perceptual-defensiverecuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).

22. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psych 67, 370–375 (1969).

23. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012). This is a cogent review comparing circuits underlying unlearned and learned defensive responses.

24. Silva, B. A., Gross, C. T. & Graff, J. The neural circuits of innate fear: detection, integration, action, and memorization. Learn. Mem. 23, 544–555 (2016).

25. Rosen, J. B., Asok, A. & Chakraborty, T. The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front. Neurosci. 9, 292 (2015).

26. Darwin, C. The Expression of the Emotions in Man and Animals. (Fontana Press, 1872).

27. Eibl-Eibesfeldt, I. & Sutterlin, C. in Fear and Defense (eds Brain, P. F., Parmigiani, S., Blanchard, R. & Mainardi, D.) 381–408 (Harwood, 1990).

28. Ekman, P. Facial expression and emotion. Am. Psychol. 48, 384–392 (1993).

29. Ploog, D. Neurobiology of primate audio-vocal behavior. Brain Res. 228, 35–61 (1981).

30. Hofer, M. A. Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocrinology 21, 203–217 (1996).

31. Blanchard, D. C., Griebel, G. & Blanchard, R. J. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci. Biobehav. Rev. 25, 205–218 (2001).

32. Owings, D. H., Rowe, M. P. & Rundus, A. S. The rattling sound of rattlesnakes (Crotalus viridis) as a communicative resource for ground squirrels (Spermophilus beecheyi) and burrowing owls (Athene cunicularia). J. Comp. Psychol. 116, 197–205 (2002).

33. Fanselow, M. S. & Lester, L. S. in Evolution and Learning (eds Bolles, R. C. & Beecher, M. D.) 185–211 (Erlbaum, 1988).

34. Bouton, M. E. & Bolles, R. C. Contextual control of the extinction of conditioned fear. Learn. Motiv. 10, 445–466 (1979).

35. LeDoux, J. E. in Handbook of Cognitive Neuroscience (ed. Gazzaniga, M. S.) 357–368 (Plenum Publishing Corp., 1984).

36. Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

37. LeDoux, J. E. The Emotional Brain (Simon and Schuster, 1996).

38. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

39. Hawkins, R. D. & Byrne, J. H. Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7, a021709 (2015).

40. Anderson, D. J. & Adolphs, R. A. Framework for studying emotions across species. Cell 157, 187–200 (2014).

41. Anderson, D. J. Circuit modules linking internal states and social behaviour in flies and mice. Nat. Rev. Neurosci. 17, 692–704 (2016).

42. Thorndike, E. L. The Elements of Psychology. (The Mason-Henry Press, 1905).

43. Skinner, B. F. The Behavior of Organisms: An Experimental Analysis. (Appleton-Century-Crofts, 1938).

44. Hull, C. L. Principles of Behavior. (Appleton-CenturyCrofts, 1943).

45. Dickinson, A. Associative learning and animal cognition. Phil. Trans. R. Soc. B Biol Sci. 367, 2733–2742 (2012).

46. Herrnstein, R. J. & Hineline, P. N. Negative reinforcement as shock-frequency reduction. J. Exp. Anal. Behav. 9, 421–430 (1966).

47. Miller, N. E. in Handbook of Experimental Psychology (ed. Stevens, S. S.) 435–472 (Wiley, 1951). This article provides a classic description of the two-factor theory of fear in avoidance.

48. Overmier, J. B. & Brackbill, R. M. On the independence of stimulus evocation of fear and fear evocation of responses. Behav. Res. Ther. 15, 51–56 (1977).

49. Boeke, E. A., Moscarello, J. M., LeDoux, J. E., Phelps, E. A. & Hartley, C. A. Active avoidance: neural mechanisms and attenuation of Pavlovian conditioned responding. J. Neurosci. 37, 4808–4818 (2017).

50. Gillan, C. M. et al. Disruption in the balance between goal-directed behavior and habit learning in obsessivecompulsive disorder. Am. J. Psychiatry 168, 718–726 (2011).

51. Dymond, S. & Roche, B. A contemporary behavior analysis of anxiety and avoidance. Behav. Analyst 32, 7–27 (2009).

52. Delgado, M. R., Jou, R. L., LeDoux, J. E. & Phelps, E. A. Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Front. Behav. Neurosci. 3, 33 (2009).

53. Schlund, M. W., Hudgins, C. D., Magee, S. & Dymond, S. Neuroimaging the temporal dynamics of human avoidance to sustained threat. Behav. Brain Res. 257, 148–155 (2013).

54. Collins, K. A., Mendelsohn, A., Cain, C. K. & Schiller, D. Taking action in the face of threat: neural synchronization predicts adaptive coping. J. Neurosci. 34, 14733–14738 (2014). This study showed that synchronization between the amygdala, striatum and medial prefrontal cortex predicts successful active coping with threats in humans.

55. Burguiere, E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015).

56. Packard, M. G. & Knowlton, B. J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002).

57. Adams, C. D. & Dickinson, A. Instrumental responding following reinforcer devaluation. Quart. J. Exp. Psychol. Section B 33, 109–121 (1981).

58. Adams, C. D. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quart. J. Exp. Psychol. Section B 34, 77–98 (1982).

59. Dezfouli, A. & Balleine, B. W. Habits, action sequences and reinforcement learning. Eur. J. Neurosci. 35, 1036–1051 (2012).

60. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

61. Everitt, B. J. & Robbins, T. W. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946–1954 (2013).

62. Decker, J. H., Otto, A. R., Daw, N. D. & Hartley, C. A. From creatures of habit to goal-directed learners: tracking the developmental emergence of model-based reinforcement learning. Psychol. Sci. 27, 848–858 (2016). This paper presents a summary of the model-based versus model-free computational approach to actions and habits in humans.

63. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

64. Packard, M. G. & McGaugh, J. L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem.

65, 65–72 (1996). 65. Gibson, B. M. & Shettleworth, S. J. Place versus response learning revisited: tests of blocking on the radial maze. Behav. Neurosci. 119, 567–586 (2005).

66. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006).

67. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016).

68. Mowrer, O. H. Two-factor learning theory: summary and comment. Psychol. Rev. 58, 350–354 (1951).

69. Rescorla, R. A. & Solomon, R. L. Two process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psych. Rev. 74, 151–182 (1967).

70. Krypotos, A. M., Effting, M., Kindt, M. & Beckers, T. Avoidance learning: a review of theoretical models and recent developments. Front. Behav. Neurosci. 9, 189 (2015).

71. Lengyel, M. & Dayan, P. in in Advances in Neural Information Processing Systems 20 (eds Platt, J. C., Koller, D., Singer, Y. & Roweis, S.) 889–896 (MIT Press, 2007).

72. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

73. Kumaran, D., Summerfield, J. J., Hassabis, D. & Maguire, E. A. Tracking the emergence of conceptual knowledge during human decision making. Neuron 63, 889–901 (2009).

74. Balleine, B. W. & Dickinson, A. in Consciousness and Human Identity (ed. Cornwall, J.) 57–85 (Oxford Univ. Press, 1998).

75. Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

76. Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).

77. LeDoux, J. E. & Brown, R. A higher-order theory of emotional consciousness. Proc. Natl Acad. Sci. USA 114, E2016–E2025 (2017). This paper proposes an extension of the higher-order theory of consciousness to emotional consciousness.

78. Baars, B. J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005).

79. Baddeley, A. D. Working memory, thought and action. (Oxford Univ. Press, 2007).

80. Frith, C., Perry, R. & Lumer, E. The neural correlates of conscious experience: an experimental framework. Trends Cogn. Sci. 3, 105–114 (1999).

81. Shallice, T. in in Consciousness in contemporary science (eds Marcel, A. & Bisiach, E.) 305–333 (Oxford Univ. Press, 1988).

82. Maia, T. V. & Cleeremans, A. Consciousness: converging insights from connectionist modeling and neuroscience. Trends Cogn. Sci. 9, 397–404 (2005).

83. Soto, D. & Silvanto, J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn. Sci. 18, 520–525 (2014).

84. Bergstrom, F. & Eriksson, J. Maintenance of nonconsciously presented information engages the prefrontal cortex. Front. Hum. Neurosci. 8, 938 (2014). This article presents evidence demonstrating nonconscious aspects of working memory.

85. Pan, Y., Lin, B., Zhao, Y. & Soto, D. Working memory biasing of visual perception without awareness. Atten. Percept. Psychophys. 76, 2051–2062 (2014).

86. Eriksson, J., Vogel, E. K., Lansner, A., Bergstrom, F. & Nyberg, L. Neurocognitive architecture of working memory. Neuron 88, 33–46 (2015).

87. Jacob, J., Jacobs, C. & Silvanto, J. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of topdown modulation. Front. Psychol. 6, 1603 (2015).

88. Trubutschek, D. et al. A theory of working memory without consciousness or sustained activity. eLife 6, e23871 (2017).

89. Heyes, C. Blackboxing: social learning strategies and cultural evolution. Phil. Trans. R. Soc. B Biol Sci. 371, 20150369 (2016).

90. Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic-like memory in animals. Phil. Trans. R. Soc. B Biol Sci. 356, 1483–1491 (2001).

91. Kornell, N. Where is the “meta” in animal metacognition? J. Comp. Psychol. 128, 143–149 (2014).

92. Smith, J. D., Couchman, J. J. & Beran, M. J. The highs and lows of theoretical interpretation in animalmetacognition research. Phil. Trans. R. Soc. B Biol Sci. 367, 1297–1309 (2012).

93. Smith, J. D., Couchman, J. J. & Beran, M. J. Animal metacognition: a tale of two comparative psychologies. J. Comp. Psychol. 128, 115–131 (2014).

94. Raby, C. R., Alexis, D. M., Dickinson, A. & Clayton, N. S. Planning for the future by western scrub-jays. Nature 445, 919–921 (2007).

95. Shettleworth, S. J. Clever animals and killjoy explanations in comparative psychology. Trends Cogn. Sci. 14, 477–481 (2010). REVIEWS 12 | ADVANCE ONLINE PUBLICATION © 2 0 1 8 M a c mil l a n P u bl i s h e r s Li mi t e d, p a rt o f S p ri n g e r N a t u r e. Al l ri g h t s r e s e r v e d. © 2 0 1 8 M a c mil l a n P u bli s h e r s Li mit e d, p a rt o f S p ri n g e r N a t u r e. All ri g h t s r e s e r v e d.

96. Suddendorf, T. & Corballis, M. C. Behavioural evidence for mental time travel in nonhuman animals. Behav. Brain Res. 215, 292–298 (2010).

97. Heyes, C. Animal mindreading: what’s the problem? Psychon Bull. Rev. 22, 313–327 (2015).

98. Lashley, K. in Cerebral Mechanisms in Behavior (ed. Jeffers, L. A.) (Wiley, 1950).

99. Gomez-Nieto, R. et al. Origin and function of shortlatency inputs to the neural substrates underlying the acoustic startle reflex. Front. Neurosci. 8, 216 (2014).

100. Davis, M., Gendelman, D. S., Tischler, M. D. & Gendelman, P. M. A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2, 791–805 (1982).

101. Yeomans, J. S. & Frankland, P. W. The acoustic startle reflex: neurons and connections. Brain Res. Brain Res. Rev. 21, 301–314 (1995).

102. Jordan, W. P. & Leaton, R. N. Startle habituation in rats after lesions in the brachium of the inferior colliculus. Physiol. Behav. 28, 253–258 (1982).

103. Blanchard, D. C. & Blanchard, R. J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psych. 81, 281–290 (1972).

104. Blanchard, R. J., Flannelly, K. J. & Blanchard, D. C. Defensive behavior of laboratory and wild Rattus norvegicus. J. Comp. Psychol. 100, 101–107 (1986).

105. Rosen, J. B., Pagani, J. H., Rolla, K. L. & Davis, C. Analysis of behavioral constraints and the neuroanatomy of fear to the predator odor trimethylthiazoline: a model for animal phobias. Neurosci. Biobehav. Rev. 32, 1267–1276 (2008).

106. Bouton, M. E. & Bolles, R. C. Conditioned fear assessed by freezing and by the suppression of three different baselines. Animal Learn. Behav. 8, 429–434 (1980).

107. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).

108. Fanselow, M. S. & Poulos, A. M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

109. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011). This paper is a summary of the circuit, cellular and molecular mechanisms of Pavlovian aversive conditioning.

110. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

111. Amaral, D. G., Price, J. L., Pitkänen, A. & Carmichael, S. T. in in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 1–66 (Wiley-Liss, 1992).

112. Sah, P., Westbrook, R. F. & Luthi, A. Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann. NY Acad. Sci. 1129, 88–95 (2008).

113. Sweatt, J. D. Neural plasticity and behavior — sixty years of conceptual advances. J. Neurochem. 139 (Suppl. 2), 179–199 (2016).

114. Keifer, O. P. Jr., Hurt, R. C., Ressler, K. J. & Marvar, P. J. The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology 30, 389–4014 (2015).

115. Bocchio, M., Nabavi, S. & Capogna, M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 94, 731–743 (2017).

116. Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

117. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

118. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

119. Grundemann, J. & Luthi, A. Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015).

120. Smith, Y. & Pare, D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J. Comp. Neurol. 342, 232–248 (1994).



Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2021