¿Cómo pensamos? | 21 MAR 10

Empleo del razonamiento probabilístico en la práctica médica

Se emplea cuando consideramos la certeza de las pruebas de diagnóstico en las decisiones clínicas.
Autor/a: Dr. Doust J. BMJ 2009;339:b3823.

Introducción

¿Qué es el razonamiento probabilístico?

El razonamiento probabilístico se emplea cuando consideramos la certeza de las pruebas de diagnóstico en las decisiones clínicas. También se lo llama razonamiento Bayesiano, basado en el teorema de Bayes, donde la probabilidad de una hipótesis es modificada por información futura. Como médicos de atención primaria, utilizamos pruebas de diagnóstico diariamente para decidir el tipo de enfermedad de nuestros pacientes, pero a menudo ignoramos el grado de certeza de los resultados de las pruebas. Con escasa frecuencia podemos confirmar o descartar una enfermedad sobre la base de las pruebas diagnósticas. ¿Qué importancia tiene esto?

Ejemplo de razonamiento probabilístico

Podemos combinar cuales son las posibilidades de una determinada enfermedad en el paciente antes de realizar las pruebas (probabilidad preestudio), con la certeza de la prueba diagnóstica (sensibilidad y especificidad) y calcular la probabilidad de que un paciente tiene una enfermedad después de obtenidas las pruebas (probabilidad post estudio).

Supongamos una mujer de 35 años que se presenta con síntomas de disuria. Las probabilidades de que tenga una infección urinaria son del 55%. La sensibilidad de la prueba de la tirilla positiva para nitritos o estearasa de los leucocitos es del 90%. La especificidad de esta prueba es del 60%. Con esta información podemos calcular la probabilidad de que la mujer tiene una infección urinaria utilizando el siguiente cálculo matemático: De 1000 mujeres, el 55% o sea 550 tendrán una infección de las vías urinarias y 450 mujeres no la tendrán. De las 550 mujeres con la enfermedad, hay 495 verdaderos positivos (sensibilidad 550×90%) y de las 450 mujeres sin la enfermedad, hay 270 verdaderos positivos (especificidad 450×60%). Completando la tabla, el número de falsos negativos es 550−495 = 55 y el número de falsos positivos es 450−270 = 180.

En la práctica clínica, necesitamos estar en condiciones de calcular las posibilidades si un paciente tiene o no una enfermedad ante una prueba positiva o negativa. Con una probabilidad preestudio del 55%, si alguna de las tirillas es positiva, las posibilidades de que la paciente tenga una infección urinaria (valor predictivo positivo) es la proporción de los verdaderos positivos ante todos los resultados positivos, es decir 495 dividido 675, o 73%. Usted puede considerar que este porcentaje no es suficiente para determinar la presencia de infección y por lo tanto puede ordenar un cultivo de orina. Por otro lado, si ambas pruebas son negativas, la probabilidad de que la paciente no tenga una infección urinaria (valor predictivo negativo), es la proporción de los verdaderos negativos con todas las pruebas negativas, o sea 270 dividido por 325, o 83%. La probabilidad de infección urinaria en este caso es del %. Este valor no es lo suficientemente bajo como para descartar infección y puede ser necesario recurrir al cultivo de orina.

Si bien los valores predictivos positivos y negativos son útiles en la práctica médica, habitualmente no se incluyen en los estudios de certeza de las pruebas diagnósticas.

Para ilustrar en que forma la probabilidad preprueba afecta la probabilidad postprueba, podemos calcular las probabilidades postprueba para el mismo estudio en una mujer embarazada asintomática (la prevalencia de infección urinaria en estos casos es del 2,4%). Si consideramos la misma sensibilidad y especificidad que la anterior, pero una probabilidad preprueba del 2,4% y completamos los cálculos de la misma forma, el valor predictivo positivo es ahora 22 dividido 413, o 5%; el 95% de todos los resultados positivos son falsos positivos. El valor predictivo negativo es ahora 585/587, es decir cercano al 100%.

La mujeres con infección urinaria recidivante tienen una probabilidad preestudio alta, del 84%. Teniendo en cuenta la misma sensibilidad y especificidad, pero utilizando ahora una probabilidad preprueba del 84%, una mujer con un estudio positivo tiene una probabilidad postestudio de 756/820 o 92%. Sin embargo, si ambas pruebas son negativas, el valor predictivo negativo es 96/180 o 53%, por lo tanto, la probabilidad de que la mujer tenga una infección de las vías urinarias aún con un resultado negativo es ahora del 47%.

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2021