Endoprótesis arteriales | 25 AGO 19

El diseño de la endoprótesis afecta la deformación arterial femoropoplítea

El presente estudio comparó la influencia de 7 diseños de endoprótesis, utilizadas en la enfermedad arterial periférica, sobre las deformaciones de la arteria femoro-poplítea inducidas por la flexión de la extremidad, usando un modelo cadavérico
Autor/a: MacTaggart J, Poulson W, Seas A, Deegan P, Lomneth C y colaboradores  Ann Surg 2019; 270(1): 180-187
INDICE:  1. Texto principal | 2. Texto principal
Texto principal
  1. Fowkes FGR, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;6736: 1–12.
  2. Schillinger M, Sabeti S, Dick P, et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation. 2007;115:2745–2749.
  3. Poulson W, Kamenskiy A, Seas A, et al. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J Vasc Surg. 2018;67:607–613.
  4. Gokgo l C, Schumann S, Diehm N, et al. In vivo quantification of the deformations of the femoropopliteal segment. J Endovasc Ther. 2017;24: 27–34.
  5. MacTaggart JJN, Phillips NNY, Lomneth CCS, et al. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J Biomech. 2014;47:2249–2256.
  6. Desyatova A, Poulson W, Deegan P, et al. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. J R Soc Interface 2017;14. pii: 20170025. doi: 10.1098/rsif.2017.0025.
  7. Ansari F, Pack LK, Brooks SS, et al. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J Vasc Surg. 2013;58:804–813.
  8. Maleckis K, Deegan P, Poulson W, et al. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J Mech Behav Biomed Mater. 2017;75: 160–168.
  9. Wadman MC, Lomneth CS, Hoffman LH, et al. Assessment of a new model for femoral ultrasound-guided central venous access procedural training: a pilot study. Acad Emerg Med. 2010;17:88–92.
  10. Kamenskiy A, Pipinos I, Dzenis Y, et al. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater. 2014;10:1301–1313.
  11. Kamenskiy A, Seas A, Bowen G, et al. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater. 2016;32:231–237.
  12. Kamenskiy AV, Pipinos II, Dzenis YA, et al. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater. 2015;11:304–313.
  13. Kamenskiy A, Seas A, Deegan P, et al. Constitutive description of human femoropopliteal artery aging. Biomech Model Mechanobiol. 2017;16: 681–692.
  14. Cheng C,Wilson N, Hallett R. In vivoMR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol. 2006;17:979–987.
  15. Cheng CP, Choi G, Herfkens RJ, et al. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J Vasc Interv Radiol. 2010;21:195–202.
 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

CONTENIDOS RELACIONADOS
AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024