Consenso de expertos sobre el manejo temprano | 29 MAY 23

Caries de la primera infancia

La caries de la primera infancia sigue siendo una enfermedad crónica importante y un problema de salud pública.
Autor/a: Jing Zou, Qin Du, Lihong Ge, Jun Wang, Xiaojing Wang, Yuqing Li y otros.  International Journal of Oral Science (2022) 14:35.
INDICE:  1. Texto principal | 2. Texto principal
Texto principal

1. American Academy of Pediatric Dentistry. Policy on early childhood caries (ECC): unique challenges and treatment options. Pediatr. Dent. 30, 44–46, (2008).

2. Tinanoff, N. Introduction to the conference: Innovations in the prevention and management of early childhood caries. Pediatr. Dent. 37, 198–199 (2015).

3. Dean, J. A., Avery, D. R. & McDonald, R. E. McDonald and Avery’s Dentistry for the Child and Adolescent (10th edition). 156 (Elsevier, 2016).

4. American Dental Association. Statement on early childhood caries http://www.ada.org/en/about-the-ada/ada-positions-policies-and-statements/ (2018).

5. Vos, M. B. et al. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation 135, e1017–e1034 (2017).

6. El Tantawi, M. et al. Prevalence and data availability of early childhood caries in 193 United Nations Countries, 2007–2017. Am. J. Public Health 108, 1066–1072 (2018).

7. Tinanoff, N. et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden,  management, education, and policy: global perspective. Int. J. Paediatr. Dent. 29, 238–248 (2019).

8. Kazeminia, M. et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head. Face Med. 16, 1–21 (2020).

9. Uribe, S. E., Innes, N. & Maldupa, I. The global prevalence of early childhood caries: a systematic review with meta‐analysis using the WHO diagnostic criteria. Int. J. Paediatr. Dent. 31, 817–830 (2021).

10. Phantumvanit, P. et al. WHO global consultation on public health intervention against early childhood caries. Community Dent. Oral Epidemiol. 46, 280–287 (2018).

11. Min Quan, D. et al. Dental caries status and its associated factors among 3-to 5- year-old children in China: a national survey. Chin. J. Dent. Res. 21, 167–179 (2018).

12. Markovic, D. et al. How much country economy influences ECC Profile in Serbian children—a macro-level factor analysis. Front. Public Health 7, 285 (2019).

13. Schwendicke, F. et al. Socioeconomic inequality and caries: a systematic review and meta-analysis. J. Dent. Res. 94, 10–18 (2015).

14. Haworth, S. et al. Heritability of caries scores, trajectories, and disease subtypes. J. Dent. Res. 99, 264–270 (2020).

15. Silva, M. J. et al. Genetic and early-life environmental influences on dental caries risk: a twin study. Pediatrics 143, e20183499 (2019).

16. Zhang, S. et al. Dental caries status of Lisu preschool children in Yunnan Province, China: a cross-sectional study. BMC Oral Health 19, 1–8 (2019).

17. Cho, H., Lee, H., Paik, D. & Bae, K. Association of dental caries with socioeconomic status in relation to different water fluoridation levels. Community

Dent. Oral Epidemiol. 42, 536–542 (2014).

18. Isaksson, H. et al. Parental factors in early childhood are associated with approximal caries experience in young adults—A longitudinal study. Community Dent. Oral. Epidemiol. 47, 49–57 (2019).

19. Iheozor‐Ejiofor, Z. et al. Water fluoridation for the prevention of dental caries. Cochrane Database Syst. Rev. 2015, CD010856 (2015).

20. Folayan, M. O. et al. An ecological study on the association between universal health service coverage index, health expenditures, and early childhood caries. BMC Oral Health 21, 1–7 (2021).

21. Heimisdóttir, L. H. et al. Metabolomics insights in early childhood caries. J. Dent. Res. 100, 615–622 (2021).

22. Lipton, R., Schwedt, T. & Friedman, B. GBD 2015 disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

23. Kassebaum, N. et al. Global burden of untreated caries: a systematic review and metaregression. J. Dent. Res. 94, 650–658 (2015).

24. Teng, F. et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 18, 296–306 (2015).

25. Jiang, W., Jiang, Y., Li, C. & Liang, J. Investigation of supragingival plaque microbiota in different caries status of Chinese preschool children by denaturing gradient gel electrophoresis. Microb. Ecol. 61, 342–352 (2011).

26. Chen, Y., Li, Y. & Zou, J. Intrageneric and intergeneric interactions developed by oral Streptococci: pivotal role in the pathogenesis of oral diseases. Curr. Issues Mol. Biol. 32, 377–434 (2019).

27. Kameda, M. et al. Sugar metabolism of Scardovia wiggsiae, a novel cariesassociated bacterium. Front. Microbiol. 11, 479 (2020).

28. Tian, J. et al. Acquisition of the arginine deiminase system benefits epiparasitic Saccharibacteria and their host bacteria in a mammalian niche environment. Proc Natl Acad Sci USA https://doi.org/10.1073/pnas.2114909119 (2022).

29. Yang, X. Q. et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries. Arch. Oral. Biol. 57, 1048–1053 (2012).

30. Chen, J. et al. EpsR negatively regulates Streptococcus mutans exopolysaccharide synthesis. J. Dent. Res. 100, 968–976 (2021).

31. Gong, T. et al. Transcriptional profiling reveals the importance of RcrR in the regulation of multiple sugar transportation and biofilm formation in Streptococcus mutans. mSystems 6, e0078821 (2021).

32. Li, Z., Xiang, Z., Zeng, J., Li, Y. & Li, J. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front. Microbiol. 9, 3224 (2018).

33. Pan, Y. et al. The Adc regulon mediates zinc homeostasis in Streptococcus mutans. Mol. Oral Microbiol. 36, 278–290 (2021).

34. Ma, Q. et al. Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence. PLoS Pathog. 17, e1010134 (2021).

35. Cheng, X. et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ. Microbiol. 18, 904–922 (2016).

36. Zheng, T. et al. Deletion of the yqeK gene leads to the accumulation of Ap4A and reduced biofilm formation in Streptococcus mutans. Mol. Oral Microbiol. 37, 9–21 (2022).

37. Chen, J. et al. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Arch. Oral Biol. 83, 174–180 (2017).

38. Zhang, A. et al. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol. Oral Microbiol. https://doi.org/10.1111/omi.12308 (2020).

39. Xiang, Z. et al. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol. Oral Microbiol. 34, 194–208(2019).

40. Dinis, M. et al. Oral microbiome: Streptococcus mutans/caries concordantdiscordant children. Front. Microbiol. 13, 782825 (2022).

41. Zhou, Y. et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int. J. Oral Sci. 10, 1–8 (2018).

42. Xiao, J. et al. Candida albicans and early childhood caries: a systematic review and meta-analysis. Caries Res. 52, 102–112 (2018).

43. Yang, C. et al. Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Mol. Oral Microbiol. 33, 283–291 (2018).

44. Du, Q. et al. [Analysis of the oral microbiota in twin children]. Hua Xi Kou Qiang Yi Xue Za Zhi 32, 182–185 (2014).

45. Teng, F. et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 18, 296–306 (2015).

46. Hemadi, A. S., Huang, R., Zhou, Y. & Zou, J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int. J. Oral Sci. 9, e1 (2017).

47. Niu, J. et al. An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. J. Mater. Chem. B 7, 4292–4298 (2019).

48. Lin, Y., Chen, J., Zhou, X. & Li, Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit. Rev. Microbiol. 47, 667–677 (2021).

49. Lin, Y., Zhou, X. & Li, Y. Strategies for Streptococcus mutans biofilm dispersal through extracellular polymeric substances disruption. Mol. Oral. Microbiol. 37,1–8 (2022).

50. Zhang, Q. et al. Structure-based discovery of small molecule inhibitors of cariogenic virulence. Sci. Rep. 7, 5974 (2017).

51. Ren, Z. et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob. Agents Chemother. 60, 126–135 (2016).

52. Chen, L. et al. Inhibition of Streptococcus mutans biofilm formation, extracelular polysaccharide production, and virulence by an oxazole derivative. Appl. Microbiol. Biotechnol. 100, 857–867 (2016).

53. Zhang, Q. et al. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. Int. J. Antimicrob. Agents 46, 174–182 (2015).

54. Zhang, Q., Ma, Q., Wang, Y., Wu, H. & Zou, J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int. J. Oral. Sci. 13, 30 (2021).

55. Zhang, G. et al. Inhibition of Streptococcus mutans biofilm formation and virulence by Lactobacillus plantarum K41 isolated from traditional Sichuan pickles. Front. Microbiol. 11, 774 (2020).

56. Liang, J. et al. pH-responsive antibacterial resin adhesives for secondary caries inhibition. J. Dent. Res. 99, 1368–1376 (2020).

57. Zero, D., Fontana, M. & Lennon, Á. M. Clinical applications and outcomes of using indicators of risk in caries management. J. Dent. Educ. 65, 1126–1132 (2001).

58. Nicolau, B., Marcenes, W., Bartley, M. & Sheiham, A. A life course approach to assessing causes of dental caries experience: the relationship between biological, behavioural, socio-economic and psychological conditions and caries in adolescents. Caries Res. 37, 319–326 (2003).

59. Featherstone, J. D. The caries balance: contributing factors and early detection. CDA 31, 129–134 (2003).

60. Affairs, A. A. O. P. D. C. O. C. Policy on use of a caries-risk assessment tool (CAT) for infants, children, and adolescents. Pediatr. Dent. 27, 25–27 (2005).

61. Nainar, S. H. & Straffon, L. H. Predoctoral dental student evaluation of American Academy of Pediatric Dentistry’s caries‐risk assessment tool. J. Dent. Educ. 70,

292–295 (2006).

62. American Academy of Pediatric Dentistry. Caries-risk assessment and management for infants, children, and adolescents. The Reference Manual of Pediatric Dentistry. Chicago, Ill.: American Academy of Pediatric Dentistry; 252–257 (2021).

63. Ramos-Gomez, F. J., Crall, J., Gansky, S. A., Slayton, R. L. & Featherstone, J. Caries risk assessment appropriate for the age 1 visit (infants and toddlers). J. Calif. Dent. Assoc. 35, 687–702 (2007).

64. Featherstone, J. D., Domejean-Orliaguet, S., Jenson, L., Wolff, M. & Young, D. A. Caries risk assessment in practice for age 6 through adult. CDA 35, 703 (2007).

65. Featherstone, J., Crystal, Y., Chaffee, B., Zhan, L. & Ramos-Gomez, F. An updated CAMBRA caries risk assessment tool for ages 0 to 5 years. J. Calif. Dent. Assoc. 47,

37–47 (2019).

66. Ramos-Gomez, F., Crystal, Y. O., Ng, M. W., Tinanoff, N. & Featherstone, J. D. Caries risk assessment, prevention, and management in pediatric dental care. Gen. Dent. 58, 505–517 (2010).

67. Featherstone, J. D. et al. Evidence-based caries management for all agespractical guidelines. Front. Oral Health 2, 14 (2021).

68. Bratthall, D. & Petersson, H. änsel G. Cariogram–a multifactorial risk Assessment model for a multifactorial disease. Community Dent. Oral Epidemiol. 33, 256–264 (2005).

69. Su, N., Lagerweij, M. D. & van der Heijden, G. J. Assessment of predictive performance of caries risk assessment models based on a systematic review and meta-analysis. J. Dent. 110, 103664 (2021).

70. Bobetsis, Y. A., Graziani, F., Gürsoy, M. & Madianos, P. N. Periodontal disease and adverse pregnancy outcomes. Periodontology 2000 83, 154–174 (2020).

71. Van Gemert-Schriks, M. Post-academic dental specialties. 11. Discomfort during atraumatic restorative treatment (ART) versus conventional restorative treatment. Ned. Tijdschr. Voor Tandheelkd. 114, 213–217 (2007).

72. Günay, H., Dmoch-Bockhorn, K., Günay, Y. & Geurtsen, W. Effect on caries experience of a long-term preventive program for mothers and children starting during pregnancy. Clin. Oral Investig. 2, 137–142 (1998).

73. Nakai, Y. et al. Xylitol gum and maternal transmission of mutans streptococci. J. Dent. Res. 89, 56–60 (2010).

74. Xiao, J. et al. Prenatal oral health care and early childhood caries prevention: a systematic review and meta-analysis. Caries Res. 53, 411–421 (2019).

75. Prevention, O. O. D. & Promotion, H. US Department of Health and Human Services: healthy people 2010. http://www/health/gov/healthypeople/ (2000).

76. American Acandemy of Pediatric Dentistry. Oral health care for the pregnant pediatric dental patient. The Reference Manual of Pediatric Dentistry. American Academy of Pediatric Dentistry 277–286 (2021).

77. American College of Obstetricians and Gynecologists. Nutrition during pregnancy. https://www.acog.org/womens-health/faqs/nutrition-during-pregnancy (2021).

78. Correa, A. et al. Diabetes mellitus and birth defects. Am. J. Obstet. Gynecol. 199, 237. e231–237. e239 (2008).

79. Steinberg, B. J., Hilton, I. V., Iida, H. & Samelson, R. Oral health and dental care during pregnancy. Dent. Clin. 57, 195–210 (2013).

80. American Dental Association. Pregnant? 9 questions you may have about your dental health: is it safe to have a dental procedure? https://www.mouthhealthy.org/en/pregnancy-slideshow (2021).

81. Peres, R. C. R. et al. Cariogenic potential of cows’, human and infant formula milks and effect of fluoride supplementation. Br. J. Nutr. 101, 376–382 (2008).

82. Nakayama, Y. & Mori, M. Association between nocturnal breastfeeding and snacking habits and the risk of early childhood caries in 18-to 23-month-old Japanese children. J. Epidemiol. 25, 142–147 (2015).

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024