Inmunidad, ambiente y enfermedad | 12 NOV 20

La inflamación crónica en la etiología de las enfermedades

Importancia de la inflamación crónica sistémica en el riesgo de enfermedades, el envejecimiento biológico y la mortalidad.
Autor/a: David Furman, Judith Campisi, Eric Verdin Nature Medicine | VOL 25 | December 2019 | 1822–1832
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas
  1. Furman, D. et al. Expression of specifc infammasome gene modules stratifes older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184 (2017).

2. Netea, M. G. et al. A guiding map for infammation. Nat. Immunol. 18, 826–831 (2017).

3. Slavich, G. M. Understanding infammation, its regulation, and relevance for health: a top scientifc and public priority. Brain Behav. Immun. 45, 13–14 (2015).

4. Bennett, J. M., Reeves, G., Billman, G. E. & Sturmberg, J. P. Infammation– nature’s way to efciently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 5, 316 (2018).

5. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specifc mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

6. Miller, G. E., Chen, E. & Parker, K. J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 137, 959–997 (2011).

7. Fleming, T. P. et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391, 1842–1852 (2018).

8. Renz, H. etal. An exposome perspective: early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 140, 24–40 (2017).

9. Kotas, M. E. & Medzhitov, R. Homeostasis, infammation, and disease susceptibility. Cell 160, 816–827 (2015).

10. Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine-immune control in chronic infammatory diseases. J. Intern. Med. 267, 543–560 (2010).

11. Straub, R. H., Cutolo, M. & Pacifci, R. Evolutionary medicine and bone loss in chronic infammatory diseases—a theory of infammation-related osteopenia. Semin. Arthritis Rheum. 45, 220–228 (2015).

12. Straub, R. H. & Schradin, C. Chronic infammatory systemic diseases: an evolutionary trade-of between acutely benefcial but chronically harmful programs. Evol. Med. Public Health 2016, 37–51 (2016).

13. Straub, R. H. Te brain and immune system prompt energy shortage in chronic infammation and ageing. Nat. Rev. Rheumatol. 13, 743–751 (2017).

14. Slavich, G. M. Psychoneuroimmunology of stress and mental health. in Te Oxford Handbook of Stress and Mental Health (eds K. Harkness & E. P. Hayden) (Oxford University Press, in the press).

15. Fullerton, J. N. & Gilroy, D. W. Resolution of infammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

16. Calder, P. C. et al. A consideration of biomarkers to be used for evaluation of infammation in human nutritional studies. Br. J. Nutr. 109, S1–S34 (2013).

17. Taniguchi, K. & Karin, M. NF-κB, infammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

18. Gisterå, A. & Hansson, G. K. Te immunology of atherosclerosis. Nat Rev. Nephrol. 13, 368–380 (2017).

19. Ferrucci, L. & Fabbri, E. Infammageing: chronic infammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

20. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

21. Miller, A. H. & Raison, C. L. Te role of infammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

22. Shen-Orr, S. S. et al. Defective signaling in the JAK-STAT pathway tracks with chronic infammation and cardiovascular risk in aging humans. Cell Syst. 3, 374–384.e4 (2016).

23. Verschoor, C. P. et al. Serum C-reactive protein and congestive heart failure as signifcant predictors of herpes zoster vaccine response in elderly nursing home residents. J. Infect. Dis. 216, 191–197 (2017).

24. Fourati, S. et al. Pre-vaccination infammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun. 7, 10369 (2016).

25. McDade, T. W., Adair, L., Feranil, A. B. & Kuzawa, C. Positive antibody response to vaccination in adolescence predicts lower C-reactive protein concentration in young adulthood in the Philippines. Am. J. Hum. Biol. 23, 313–318 (2011).

26. Singer, K. & Lumeng, C. N. Te initiation of metabolic infammation in childhood obesity. J. Clin. Invest. 127, 65–73 (2017).

27. Olvera Alvarez, H. A., Kubzansky, L. D., Campen, M. J. & Slavich, G. M. Early life stress, air pollution, infammation, and disease: an integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci. Biobehav. Rev. 92, 226–242 (2018).

28. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

29. Serhan, C. N. & Levy, B. D. Resolvins in infammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

30. Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Infammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

31. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of infammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

32. Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, diferences, and crosstalk. Cell Death Difer. 26, 99–114 (2019).

33. Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013).

34. Hotamisligil, G. S. Infammation, metafammation and immunometabolic disorders. Nature 542, 177–185 (2017).

35. Kazankov, K. et al. Te role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 145–159 (2019).

36. Redlich, K. & Smolen, J. S. Infammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).

37. Zhang, J. et al. Te risk of metabolic syndrome in patients with rheumatoid arthritis: a meta-analysis of observational studies. PLoS One 8, e78151 (2013).

38. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. Psoriasis and the risk of diabetes mellitus: a systematic review and meta-analysis. JAMA Dermatol. 149, 84–91 (2013).

39. Dregan, A., Charlton, J., Chowienczyk, P. & Gulliford, M. C. Chronic infammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation 130, 837–844 (2014).

40. Ridker, P. M. A test in context: high-sensitivity C-reactive protein. J. Am. Coll. Cardiol. 67, 712–723 (2016).

41. Emerging Risk Factors Collaboration. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

42. Burska, A. N., Sakthiswary, R. & Sattar, N. Efects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS One 10, e0128889 (2015).

43. Chou, R. et al. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs 30, 1111–1120 (2016).

44. Ridker, P. M. et al. Antiinfammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

45. Proctor, M. J. et al. Systemic infammation predicts all-cause mortality: a Glasgow infammation outcome study. PLoS One 10, e0116206 (2015).

46. Arai, Y. et al. Infammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2, 1549–1558 (2015).

47. Roubenof, R. et al. Monocyte cytokine production in an elderly population: efect of age and infammation. J. Gerontol. A Biol. Sci. Med. Sci. 53, M20–M26 (1998).

48. Ahluwalia, N. et al. Cytokine production by stimulated mononuclear cells did not change with aging in apparently healthy, well-nourished women. Mech. Ageing Dev. 122, 1269–1279 (2001).

49. Beharka, A. A. et al. Interleukin-6 production does not increase with age. J. Gerontol. A Biol. Sci. Med. Sci. 56, B81–B8 (2001).

50. Elisia, I. et al. Efect of age on chronic infammation and responsiveness to bacterial and viral challenges. PLoS One 12, e0188881 (2017).

51. Morrisette-Tomas, V. et al. Infamm-aging does not simply refect increases in pro-infammatory markers. Mech. Ageing Dev. 139, 49–57 (2014). 52. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

53. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. Te senescenceassociated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

54. Zhu, Y., Armstrong, J. L., Tchkonia, T. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 17, 324–328 (2014).

55. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

56. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

57. Efros, R. B. Te silent war of CMV in aging and HIV infection. Mech. Ageing Dev. 158, 46–52 (2016).

58. Stout, M. B., Justice, J. N., Nicklas, B. J. & Kirkland, J. L. Physiological aging: links among adipose tissue dysfunction, diabetes, and frailty. Physiology (Bethesda) 32, 9–19 (2017).

59. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Infammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 159, 1–15 (2018). 60. Zitvogel, L., Pietrocola, F. & Kroemer, G. Nutrition, infammation and cancer. Nat. Immunol. 18, 843–850 (2017).

61. Razzoli, M. et al. Social stress shortens lifespan in mice. Aging Cell 17, e12778 (2018).

62. Carroll, J. E. et al. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav. Immun. 51, 223–229 (2016).

63. Yuan, J. et al. Long-term persistent organic pollutants exposure induced telomere dysfunction and senescence-associated secretary phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1027–1035 (2018).

64. Shen-Orr, S. S. & Furman, D. Variability in the immune system: of vaccine responses and immune states. Curr. Opin. Immunol. 25, 542–547 (2013).

65. McDade, T. W. Early environments and the ecology of infammation. Proc. Natl Acad. Sci. USA 109, 17281–17288 (2012).

66. Carrera-Bastos, P., Fontes-Villalba, M., O’Keefe, J. H., Lindeberg, S. & Cordain, L. Te western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol. 2, 15–35 (2011).

67. Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29, e22919 (2017).

68. Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).

69. Lindeberg, S. & Lundh, B. Apparent absence of stroke and ischaemic heart disease in a traditional Melanesian island: a clinical study in Kitava. J. Intern. Med. 233, 269–275 (1993).

70. Lindeberg, S., Berntorp, E., Nilsson-Ehle, P., Terént, A. & Vessby, B. Age relations of cardiovascular risk factors in a traditional Melanesian society: the Kitava Study. Am. J. Clin. Nutr. 66, 845–852 (1997).

71. Lindeberg, S., Eliasson, M., Lindahl, B. & Ahrén, B. Low serum insulin in traditional Pacifc Islanders—the Kitava Study. Metabolism 48, 1216–1219 (1999).

72. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable infuences. Cell 160, 37–47 (2015).

73. Niedzwiecki, M. M. et al. Te exposome: molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127 (2019).

74. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefning chronic viral infection. Cell 138, 30–50 (2009).

75. Wang, C. et al. Efects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J. Immunol. 192, 603–611 (2014).

76. Petta, S. et al. Hepatitis C virus infection is associated with increased cardiovascular mortality: a meta-analysis of observational studies. Gastroenterology 150, 145–155.e4 (2016).

77. Root-Bernstein, R. & Fairweather, D. Complexities in the relationship between infection and autoimmunity. Curr. Allergy Asthma Rep. 14, 407 (2014).

78. Furman, D. et al. Cytomegalovirus infection enhances the immune response to infuenza. Sci. Transl. Med. 7, 281ra43 (2015).

79. Pawelec, G. et al. Human immunosenescence: is it infectious? Immunol. Rev. 205, 257–268 (2005).

80. Chou, J. P., Ramirez, C. M., Wu, J. E. & Efros, R. B. Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8+ T cells. PLoS One 8, e64702 (2013).

81. Sochocka, M., Zwolińska, K. & Leszek, J. Te infectious etiology of Alzheimer’s disease. Curr. Neuropharmacol. 15, 996–1009 (2017).

82. Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).

83. McDade, T. W. et al. Analysis of variability of high sensitivity C-reactive protein in lowland Ecuador reveals no evidence of chronic low-grade infammation. Am. J. Hum. Biol. 24, 675–681 (2012).

84. Liebert, M. A. et al. Implications of market integration for cardiovascular and metabolic health among an indigenous Amazonian Ecuadorian population. Ann. Hum. Biol. 40, 228–242 (2013).

85. Eriksson, U. K., van Bodegom, D., May, L., Boef, A. G. C. & Westendorp, R. G. J. Low C-reactive protein levels in a traditional West-African population living in a malaria endemic area. PLoS One 8, e70076 (2013).

86. Agmon-Levin, N. et al. Antitreponemal antibodies leading to autoantibody production and protection from atherosclerosis in Kitavans from Papua New Guinea. Ann. N. Y. Acad. Sci. 1173, 675–682 (2009).

87. Gurven, M., Jaeggi, A. V., Kaplan, H. & Cummings, D. Physical activity and modernization among Bolivian Amerindians. PLoS One 8, e55679 (2013).

88. Cordain, L. et al. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am. J. Clin. Nutr. 71, 682–692 (2000).

89. Kuipers, R. S., Joordens, J. C. A. & Muskiet, F. A. J. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr. Res. Rev. 25, 96–129 (2012).

90. De la Iglesia, H. O. et al. Ancestral sleep. Curr. Biol. 26, R271–R272 (2016). 91. Slavich, G. M. & Cole, S. W. Te emerging feld of human social genomics. Clin. Psychol. Sci. 1, 331–348 (2013).

92. Chakravarthy, M. V. & Booth, F. W. Eating, exercise, and ‘thrify’ genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J. Appl. Physiol. 96, 3–10 (2004).

93. Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

94. Katzmarzyk, P. T., Lee, I.-M., Martin, C. K. & Blair, S. N. Epidemiology of physical activity and exercise training in the United States. Prog. Cardiovasc. Dis. 60, 3–10 (2017).

95. Fiuza-Luces, C. et al. Exercise benefts in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

96. Breen, L. et al. Two weeks of reduced activity decreases leg lean mass and induces ‘anabolic resistance’ of myofbrillar protein synthesis in healthy elderly. J. Clin. Endocrinol. Metab. 98, 2604–2612 (2013).

97. Fedewa, M. V., Hathaway, E. D. & Ward-Ritacco, C. L. Efect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br. J. Sports Med. 51, 670–676 (2017).

98. Meneses-Echávez, J. F. et al. Te efect of exercise training on mediators of infammation in breast cancer survivors: a systematic review with meta-analysis. Cancer Epidemiol. Biomarkers Prev. 25, 1009–1017 (2016).

99. Hayashino, Y. et al. Efects of exercise on C-reactive protein, infammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metab. Clin. Exp. 63, 431–440 (2014).

100. Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).

101. Wahid, A. et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J. Am. Heart Assoc. 5, e002495 (2016).

102. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

103. Santos-Lozano, A. et al. Physical activity and Alzheimer disease: a protective association. Mayo. Clin. Proc. 91, 999–1020 (2016).

104. Pérez, L. M. et al. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J. Physiol. 594, 3187–3207 (2016).

105. Schipper, H. S., Prakken, B., Kalkhoven, E. & Boes, M. Adipose tissueresident immune cells: key players in immunometabolism. Trends Endocrinol. Metabol. 23, 407–415 (2012).

106. Tchernof, A. & Després, J.-P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

107. Pellegrinelli, V., Carobbio, S. & Vidal-Puig, A. Adipose tissue plasticity: how fat depots respond diferently to pathophysiological cues. Diabetologia 59, 1075–1088 (2016).

108. Frasca, D., Blomberg, B. B. & Paganelli, R. Aging, obesity, and infammatory age-related diseases. Front. Immunol. 8, 1745 (2017).

109. Grant, R. W. & Dixit, V. D. Adipose tissue as an immunological organ. Obesity (Silver Spring) 23, 512–518 (2015).

110. Versini, M., Jeandel, P.-Y., Rosenthal, E. & Shoenfeld, Y. Obesity in autoimmune diseases: not a passive bystander. Autoimm. Rev. 13, 981–1000 (2014).

111. Himbert, C. et al. Signals from the adipose microenvironment and the obesity-cancer link–a systematic review. Cancer Prev. Res. (Phila.) 10, 494–506 (2017).

112. van Dijk, G. et al. Integrative neurobiology of metabolic diseases, neuroinfammation, and neurodegeneration. Front. Neurosci. 9, 173 (2015).

113. NCD Risk Factor Collaboration (NCD-RisC). et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

114. Cani, P. D. & Jordan, B. F. Gut microbiota-mediated infammation in obesity: a link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15, 671–682 (2018).

115. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

116. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate afer bariatric surgery. Gut 68, 70–82 (2019).

117. Sturgeon, C. & Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic infammatory diseases. Tissue Barriers 4, e1251384 (2016).

118. Jayashree, B. et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinfammation in patients with type 2 diabetes. Mol. Cell. Biochem. 388, 203–210 (2014).

119. Küme, T. et al. Te relationship between serum zonulin level and clinical and laboratory parameters of childhood obesity. J. Clin. Res. Pediatr. Endocrinol. 9, 31–38 (2017).

120. Qi, Y. et al. Intestinal permeability biomarker zonulin is elevated in healthy aging. J. Am. Med. Direc. Assoc. 18, 810.e1–810.e4 (2017).

121. Le Bastard, Q. et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ter. 47, 332–345 (2018).

122. Bjarnason, I. et al. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-infammatory drugs. Gastroenterology 154, 500–514 (2018).

123. Sonnenburg, E. D. & Sonnenburg, J. L. Te ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

124. Bentley, J. U.S. trends in food availability and a dietary assessment of loss-adjusted food availability, 1970-2014. EIB-166, U.S. Department of Agriculture, Economic Research Service (2017).

125. Martínez Steele, E. et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6, e009892 (2016).

126. Grant, B. F. et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: results from the national epidemiologic survey on alcohol and related conditions. JAMA. Psychiatry 74, 911–923 (2017).

127. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal infammation. Gut 66, 1414–1427 (2017).

128. Zmora, N., Bashiardes, S., Levy, M. & Elinav, E. Te role of the immune system in metabolic health and disease. Cell Metab. 25, 506–521 (2017).

129. Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R. & Mariño, E. Dietary metabolites and the gut microbiota: an alternative approach to control infammatory and autoimmune diseases. Clin. Trans. Immunol. 5, e82 (2016).

130. Bishehsari, F. et al. Alcohol and gut-derived infammation. Alcohol Res. 38, 163–171 (2017).

131. Lerner, A. & Matthias, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimm. Rev. 14, 479–489 (2015).

132. Vlassara, H. & Striker, G. E. AGE restriction in diabetes mellitus: a paradigm shif. Nat. Rev. Endocrinol. 7, 526–539 (2011).

133. Dickinson, S., Hancock, D. P., Petocz, P., Ceriello, A. & Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 87, 1188–1193 (2008).

134. Mozafarian, D., Aro, A. & Willett, W. C. Health efects of trans-fatty acids: experimental and observational evidence. Eur. J. Clin. Nutr. 63, S5–S21 (2009).

135. Muller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).

136. Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

137. Bonaventura, P., Benedetti, G., Albarède, F. & Miossec, P. Zinc and its role in immunity and infammation. Autoimm. Rev. 14, 277–285 (2015).

138. Nielsen, F. H. Efects of magnesium depletion on infammation in chronic disease. Curr. Opin. Clin. Nutr. Metab. Care 17, 525–530 (2014).

139. Calder, P. C. Omega-3 fatty acids and infammatory processes: from molecules to man. Biochem. Soc. Trans. 45, 1105–1115 (2017).

140. Blasbalg, T. L., Hibbeln, J. R., Ramsden, C. E., Majchrzak, S. F. & Rawlings, R. R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 93, 950–962 (2011).

141. Calder, P. C. Very long-chain n-3 fatty acids and human health: fact, fction and the future. Proc. Nutr. Soc. 77, 52–72 (2018).

142. Kiecolt-Glaser, J. K. et al. Omega-3 supplementation lowers infammation and anxiety in medical students: a randomized controlled trial. Brain Behav. Immun. 25, 1725–1734 (2011).

143. Kiecolt-Glaser, J. K. et al. Omega-3 supplementation lowers infammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav. Immun. 26, 988–995 (2012).

144. AbuMweis, S., Jew, S., Tayyem, R. & Agraib, L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: a meta-analysis of randomised placebo-control human clinical trials. J. Hum. Nutr. Diet. 31, 67–84 (2017).

145. Danaei, G. et al. Te preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, e1000058 (2009).

146. GBD 2017 Diet Collaborators. Health efects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

147. Hall, K. D. Did the food environment cause theobesity epidemic? Obesity (Silver Spring) 26, 11–13 (2018).

148. van Niekerk, G., Toit, du, A., Loos, B. & Engelbrecht, A.-M. Nutrient excess and autophagic defciency: explaining metabolic diseases in obesity. Metab. Clin. Exp. 82, 14–21 (2018).

149. Slavich, G. M. & Irwin, M. R. From stress to infammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 140, 774–815 (2014).

150. Tobaldini, E. et al. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat. Rev. Cardiol. 16, 213–224 (2019).

151. Reutrakul, S. & Van Cauter, E. Sleep infuences on obesity, insulin resistance, and risk of type 2 diabetes. Metab. Clin. Exp. 84, 56–66 (2018).

152. Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart 102, 1009–1016 (2016).

153. Steptoe, A., Shankar, A., Demakakos, P. & Wardle, J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc. Natl Acad. Sci. USA 110, 5797–5801 (2013).

154. Kivimaki, M. & Steptoe, A. Efects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

155. Chandola, T., Brunner, E. & Marmot, M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ 332, 521–525 (2006).

156. Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, infammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).

157. Lunn, R. M. et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shif work at night, artifcial light at night, and circadian disruption. Sci. Total Environ. 607–608, 1073–1084 (2017).

158. Hatori, M. et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech. Dis. 3, 9 (2017).

159. Touitou, Y., Reinberg, A. & Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 173, 94–106 (2017).

160. Leproult, R., Holmbäck, U. & Van Cauter, E. Circadian misalignment augments markers of insulin resistance and infammation, independently of sleep loss. Diabetes 63, 1860–1869 (2014).

161. Jiang, C. et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell 175, 277–291.e31 (2018).

162. Sly, P. D. et al. Health consequences of environmental exposures: causal thinking in global environmental epidemiology. Ann. Glob. Health 82, 3–9 (2016).

163. Collins, F. S., Gray, G. M. & Bucher, J. R. Toxicology. Transforming environmental health protection. Science 319, 906–907 (2008).

164. Kleinstreuer, N. C. et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32, 583–591 (2014).

165. Tompson, P. A. et al. Environmental immune disruptors, infammation and cancer risk. Carcinogenesis 36, S232–S253 (2015).

166. Floreani, A., Leung, P. S. C. & Gershwin, M. E. Environmental basis of autoimmunity. Clin. Rev. Allergy Immunol. 50, 287–300 (2016).

167. GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 389, 1885–1906 (2017).

168. McDade, T. W., Rutherford, J., Adair, L. & Kuzawa, C. W. Early origins of infammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proc. Biol. Sci. 277, 1129–1137 (2010).

169. Fagundes, C. P., Glaser, R. & Kiecolt-Glaser, J. K. Stressful early life experiences and immune dysregulation across the lifespan. Brain Behav. Immun. 27, 8–12 (2013).

170. Slavich, G. M., Way, B. M., Eisenberger, N. I. & Taylor, S. E. Neural sensitivity to social rejection is associated with infammatory responses to social stress. Proc. Natl Acad. Sci. USA 107, 14817–14822 (2010).

171. Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

172. Blazkova, J. et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J. Immunol. 198, 2479–2488 (2017).

173. Aghaeepour, N. et al. An immune clock of human pregnancy. Sci. Immunol. 2, eaan2946 (2017).

174. Simmen, F. A. & Simmen, R. C. M. Te maternal womb: a novel target for cancer prevention in the era of the obesity pandemic? Eur. J. Cancer Prev. 20, 539–548 (2011).

175. Le Belle, J. E. et al. Maternal infammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Reports 3, 725–734 (2014).

176. Su, L. F. et al. Te promised land of human immunology. Cold Spring Harb. Symp. Quant. Biol. 78, 203–213 (2013).

177. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

178. Schüssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for precision health. Nat. Med. 25, 792–804 (2019).

179. Slavich, G. M. & Sacher, J. Stress, sex hormones, infammation, and major depressive disorder: extending social signal transduction theory of depression to account for sex diferences in mood disorders. Psychopharmacology (Berl.) 236, 3063–3079 (2019).



Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí

Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2020