Una guía de acción para el médico práctico | 14 NOV 20

Nódulos tiroideos

Investigación diagnóstica basada en la evaluación del riesgo de cáncer de tiroides
6
12
Autor/a: Naykky Singh Ospina, Nicole M Iñiguez-Ariza, M Regina Castro.  BMJ 2020;368:l6670
INDICE:  1. Texto principal | 2. Referencias bibliográficas
Referencias bibliográficas

 

1 Singh Ospina N, Maraka S, Espinosa De Ycaza AE, et al. Physical exam in asymptomatic people drivers the detection of thyroid nodules undergoing ultrasound guided fine needle aspiration biopsy. Endocrine 2016;54:433-9. doi:10.1007/s12020-016-1054-y

2 Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest 2009;39:699-706.doi:10.1111/j.1365-2362.2009.02162.x

3 Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N Engl J Med 2016;375:614-7. doi:10.1056/NEJMp1604412

4 Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133. doi:10.1089/ thy.2015.0020

5 Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TIRADS Committee. J Am Coll Radiol 2017;14:587-95. doi:10.1016/j. jacr.2017.01.046 6 Singh Ospina N, Brito JP, Maraka S, et al. Diagnostic accuracy of ultrasound-guided fine needle aspiration biopsy for thyroid malignancy: systematic review and meta-analysis. Endocrine 2016;53:651-61. doi:10.1007/s12020-016-0921-x

7 Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. J Am Soc Cytopathol 2017;6:217-22. doi:10.1016/j. jasc.2017.09.002

8 Valderrabano P, Khazai L, Thompson ZJ, et al. Cancer Risk Stratification of Indeterminate Thyroid Nodules: A Cytological Approach. Thyroid 2017;27:1277-84. doi:10.1089/thy.2017.0221 9 Reiners C, Wegscheider K, Schicha H, et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 2004;14:926-32. doi:10.1089/thy.2004.14.926

10 Tufano RP, Noureldine SI, Angelos P. Incidental thyroid nodules and thyroid cancer: considerations before determining management.

JAMA Otolaryngol Head Neck Surg 2015;141:566-72. doi:10.1001/

jamaoto.2015.0647

11 Steele SR, Martin MJ, Mullenix PS, Azarow KS, Andersen CA. The significance of incidental thyroid abnormalities identified during carotid duplex ultrasonography. Arch Surg 2005;140:981-5.doi:10.1001/archsurg.140.10.981

12 Ahmed S, Johnson PT, Horton KM, et al. Prevalence of unsuspected thyroid nodules in adults on contrast enhanced 16- and 64-MDCT of the chest. World J Radiol 2012;4:311-7. doi:10.4329/wjr.v4.i7.311

13 Bahl M. Incidental Thyroid Nodules in the National Lung Screening Trial: Estimation of Prevalence, Malignancy Rate, and Strategy for Workup. Acad Radiol 2018;25:1152-5. doi:10.1016/j. acra.2018.02.016

14 Park JY, Lee KH, Cho SG, et al. Incidental thyroid nodules on thoracic contrast-enhanced computed tomography in clinical practice during a 10-year period: Characteristics, clinical outcomes, and factors contributing to further evaluation. Medicine (Baltimore) 2017;96:e6388. doi:10.1097/MD.0000000000006388

15 Seo H, Kim JH, Jin KN, et al. Prevalence and risk of malignancy in incidental thyroid nodules on low dose screening chest CT a retrospective study. Neuroradiology 2014;56(Suppl 1):176.

16 Yoon DY, Chang SK, Choi CS, et al. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr 2008;32:810-5. doi:10.1097/RCT.0b013e318157fd38

17 Lim HK, Park ST, Ha H, Choi SY. Thyroid Nodules Detected by Contrast-Enhanced Magnetic Resonance Angiography: Prevalence and Clinical Significance. PLoS One 2016;11:e0149811. doi:10.1371/journal. pone.0149811

18 Soelberg KK, Bonnema SJ, Brix TH, et al. Risk of malignancy in thyroid incidentalomas detected by 18F-FDGPET is related to focal uptake but independent of continental differences in absolute thyroid cancer incidences. Eur Thyroid J 2012;1(Suppl 1):130.

19 Yao Y, Chen X, Wu S, et al. Thyroid nodules in centenarians: prevalence and relationship to lifestyle characteristics and dietary habits. Clin Interv Aging 2018;13:515-22. doi:10.2147/CIA.S162425

20 Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006;295:2164-7. doi:10.1001/jama.295.18.2164

21 Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic”--screening and overdiagnosis. N Engl J Med 2014;371:1765-7.doi:10.1056/NEJMp1409841

22 Ahn HS, Kim HJ, Kim KH, et al. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid 2016;26:1535-40. doi:10.1089/thy.2016.0075

23 Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid 2015;25:1127-36. doi:10.1089/thy.2015.0116

24 Enewold L, Zhu K, Ron E, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev 2009;18:784-91. doi:10.1158/1055-9965.EPI-08-0960

25 Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. JAMA 2017;317:1338-48. doi:10.1001/jama.2017.2719

26 Lin JS, Bowles EJA, Williams SB, Morrison CC. Screening for Thyroid Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017;317:1888-903. doi:10.1001/jama.2017.0562

27 Bibbins-Domingo K, Grossman DC, Curry SJ, et al, US Preventive Services Task Force. Screening for Thyroid Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2017;317:1882-7. doi:10.1001/jama.2017.4011

28 Kopp P, Kimura ET, Aeschimann S, et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J Clin Endocrinol Metab 1994;79:134-9.

29 Meier CA. Thyroid nodules: pathogenesis, diagnosis and treatment. Baillieres Best Pract Res Clin Endocrinol Metab 2000;14:559-75. doi:10.1053/beem.2000.0103

30 Tonacchera M, Chiovato L, Pinchera A, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab 1998;83:492-8. doi:10.1210/jc.83.2.492

31 Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159:676- 90. doi:10.1016/j.cell.2014.09.050

32 Fagin JA, Wells SAJr. Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med 2016;375:2307. doi:10.1056/NEJMra1501993

33 Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol 2016;2:1023-9. doi:10.1001/jamaoncol.2016.0386

34 Haugen BR, Sawka AM, Alexander EK, et al. American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to

Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid 2017;27:481-3. doi:10.1089/thy.2016.0628

35 Burman KD, Wartofsky L. CLINICAL PRACTICE. Thyroid Nodules. N Engl J Med 2015;373:2347-56. doi:10.1056/NEJMcp1415786

36 Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995;141:259-77. doi:10.2307/3579003

37 Seib CD, Sosa JA. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am 2019;48:23-35. doi:10.1016/j.ecl.2018.10.002

38 Bhatti P, Veiga LH, Ronckers CM, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res 2010;174:741-52. doi:10.1667/RR2240.1

39 Yamamoto H, Hayashi K, Scherb H. Association between the detection rate of thyroid cancer and the external radiation dose-rate after the nuclear power plant accidents in Fukushima, Japan. Medicine (Baltimore) 2019;98:e17165. doi:10.1097/MD.0000000000017165

40 Ricarte-Filho JC, Li S, Garcia-Rendueles ME, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:4935-44. doi:10.1172/JCI69766

41 Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab 1999;84:4232-8. doi:10.1210/jc.84.11.4232

42 Laurberg P, Cerqueira C, Ovesen L, et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab 2010;24:13-27. doi:10.1016/j. beem.2009.08.013

43 Zimmermann MB. Thyroid gland: Iodine deficiency and thyroid nodules. Nat Rev Endocrinol 2014;10:707-8. doi:10.1038/nrendo.2014.187

44 Yu X, Fan C, Shan Z, et al. A five-year follow-up study of goiter and thyroid nodules in three regions with different iodine intakes in China. J Endocrinol Invest 2008;31:243-50. doi:10.1007/BF03345597

45 Cardis E, Kesminiene A, Ivanov V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005;97:724-32. doi:10.1093/jnci/dji129

46 Gara SK, Jia L, Merino MJ, et al. Germline HABP2 Mutation Causing Familial Nonmedullary Thyroid Cancer. N Engl J Med 2015;373:448-55. doi:10.1056/NEJMoa1502449

47 Grani G, Lamartina L, Montesano T, et al. Lack of association between obesity and aggressiveness of differentiated thyroid cancer. J Endocrinol Invest 2019;42:85-90. doi:10.1007/s40618-018-0889-x

48 Han MA, Kim JH. Diagnostic X-Ray Exposure and Thyroid Cancer Risk: Systematic Review and Meta-Analysis. Thyroid 2018;28:220-8. doi:10.1089/thy.2017.0159

49 Harari A, Endo B, Nishimoto S, Ituarte PH, Yeh MW. Risk of advanced papillary thyroid cancer in obese patients. Arch Surg 2012;147:805-11. doi:10.1001/archsurg.2012.713

50 Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab 2005;90:5747-53. doi:10.1210/jc.2005-0935

51 Hoffman K, Lorenzo A, Butt CM, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. Environ Int 2017;107:235-42. doi:10.1016/j. envint.2017.06.021

52 Kim HJ, Kim NK, Choi JH, et al. Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin Endocrinol (Oxf) 2013;78:134-40. doi:10.1111/j.1365-2265.2012.04506.x

53 Kitahara CM, K Rmendiné Farkas D, Jørgensen JOL, Cronin-Fenton D, Sørensen HT. Benign Thyroid Diseases and Risk of Thyroid Cancer: A Nationwide Cohort Study. J Clin Endocrinol Metab 2018;103:2216-24. doi:10.1210/jc.2017-02599

54 Kitahara CM, Linet MS, Beane Freeman LE, et al. Cigarette smoking, alcohol intake, and thyroid cancer risk: a pooled analysis of five prospective studies in the United States. Cancer Causes Control 2012;23:1615-24. doi:10.1007/s10552-012-0039-2

55 Kitahara CM, McCullough ML, Franceschi S, et al. Anthropometric Factors and Thyroid Cancer Risk by Histological Subtype: Pooled Analysis of 22 Prospective Studies. Thyroid 2016;26:306-18.doi:10.1089/thy.2015.0319

56 Lee JH, Kim Y, Choi JW, Kim YS. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: a meta-analysis. Eur J Endocrinol 2013;168:343-9. doi:10.1530/EJE-12-0903

57 Malandrino P, Russo M, Ronchi A, et al. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine 2016;53:471-9. doi:10.1007/s12020-015-0761-0

58 Pal T, Vogl FD, Chappuis PO, et al. Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: a hospital-based study. J Clin Endocrinol Metab 2001;86:5307-12. doi:10.1210/jcem.86.11.8010

59 Preston-Martin S, Franceschi S, Ron E, Negri E. Thyroid cancer pooled analysis from 14 case-control studies: what have we learned?Cancer Causes Control 2003;14:787-9. doi:10.1023/A:1026312203045

60 Schmid D, Ricci C, Behrens G, Leitzmann MF. Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes Rev 2015;16:1042-54. doi:10.1111/obr.12321

61 Trésallet C, Seman M, Tissier F, et al. The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indices. Surgery 2014;156:1145-52. doi:10.1016/j.surg.2014.04.020

62 Sørensen JR, Hegedüs L, Kruse-Andersen S, Godballe C, Bonnema SJ. The impact of goitre and its treatment on the trachea, airflow, oesophagus and swallowing function. A systematic review. Best Pract Res Clin Endocrinol Metab 2014;28:481-94. doi:10.1016/j. beem.2014.03.002

63 Holler T, Anderson J. Prevalence of voice & swallowing complaints in Pre-operative thyroidectomy patients: a prospective cohort study. J Otolaryngol Head Neck Surg 2014;43:28. doi:10.1186/s40463-014-0028-4

64 Pernambuco L, Silva MP, Almeida MN, Costa EB, Souza LB. Selfperception of swallowing by patients with benign nonsurgical thyroid disease. Codas 2017;29:e20160020.

65 Sharma A, Jasim S, Reading CC, et al. Clinical Presentation and Diagnostic Challenges of Thyroid Lymphoma: A Cohort Study. Thyroid 2016;26:1061-7. doi:10.1089/thy.2016.0095

66 Smallridge RC, Ain KB, Asa SL, et al, American Thyroid Association Anaplastic Thyroid Cancer Guidelines Taskforce. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22:1104-39. doi:10.1089/thy.2012.0302

67 Daniels GH, Kopp PA. Guidelines Are Not Gospel!Thyroid 2019;29:753-7. doi:10.1089/thy.2019.0283

68 Costante G, Durante C, Francis Z, Schlumberger M, Filetti S. Determination of calcitonin levels in C-cell disease: clinical interest and potential pitfalls. Nat Clin Pract Endocrinol Metab 2009;5:35-44.doi:10.1038/ncpendmet1023

69 Berger ZD, Brito JP, Ospina NS, et al. Patient centred diagnosis: sharing diagnostic decisions with patients in clinical practice. BMJ 2017;359:j4218. doi:10.1136/bmj.j4218 70 Valderrabano P, McIver B. Evaluation and Management of Indeterminate Thyroid Nodules: The Revolution of Risk Stratification Beyond Cytological Diagnosis. Cancer Control 2017;24:1073274817729231.doi:10.1177/1073274817729231

71 Whiting PF, Rutjes AW, Westwood ME, et al, QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.doi:10.7326/0003-4819-155-8-201110180-00009

72 Spencer-Bonilla G, Singh Ospina N, Rodriguez-Gutierrez R, et al. Systematic reviews of diagnostic tests in endocrinology: an audit of methods, reporting, and performance. Endocrine 2017;57:18-34.doi:10.1007/s12020-017-1298-1

73 Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017;27:1341-6. doi:10.1089/thy.2017.0500

74 Vuong HG, Tran TTK, Bychkov A, et al. Clinical Impact of Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features on the Risk of Malignancy in the Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis of 14 153 Resected Thyroid Nodules. Endocr Pract 2019;25:491-502. doi:10.4158/EP-2018-0506

75 Wang Z, Vyas CM, Van Benschoten O, et al. Quantitative Analysis of the Benefits and Risk of Thyroid Nodule Evaluation in Patients ≥70 Years Old. Thyroid 2018;28:465-71. doi:10.1089/thy.2017.0655

76 Gillanders SL, O’Neill JP. Prognostic markers in well differentiated papillary and follicular thyroid cancer (WDTC). Eur J Surg Oncol 2018;44:286-96. doi:10.1016/j.ejso.2017.07.013

77 Tam S, Amit M, Boonsripitayanon M, et al. Effect of Tumor Size and Minimal Extrathyroidal Extension in Patients with Differentiated Thyroid Cancer. Thyroid 2018;28:982-90. doi:10.1089/thy.2017.0513

78 Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: A review of active surveillance trials. Eur J Surg Oncol 2018;44:307-15. doi:10.1016/j.ejso.2017.03.004

79 Tuttle RM, Fagin JA, Minkowitz G, et al. Natural History and Tumor Volume Kinetics of Papillary Thyroid Cancers During Active Surveillance. JAMA Otolaryngol Head Neck Surg 2017;143:1015-20.doi:10.1001/jamaoto.2017.1442

80 Liu X, Medici M, Kwong N, et al. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis. Thyroid 2016;26:256-61. doi:10.1089/thy.2015.0376

81 Evranos B, Polat SB, Baser H, et al. Bethesda classification is a valuable guide for fine needle aspiration reports and highly predictive especially for diagnosing aggressive variants of papillary thyroid carcinoma. Cytopathology 2017;28:259-67. doi:10.1111/cyt.12384

82 Vuong HG, Altibi AM, Duong UN, et al. Role of molecular markers to predict distant metastasis in papillary thyroid carcinoma: Promising value of TERT promoter mutations and insignificant role of BRAF mutations-a metaanalysis. Tumour Biol 2017;39:1010428317713913. doi:10.1177/1010428317713913

83 Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and metaanalysis. Eur J Endocrinol 2014;170:R203-11. doi:10.1530/EJE-13-0995

84 Kwong N, Medici M, Angell TE, et al. The Influence of Patient Age on Thyroid Nodule Formation, Multinodularity, and Thyroid Cancer Risk. J Clin Endocrinol Metab 2015;100:4434-40. doi:10.1210/jc.2015-3100

85 McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab 2012;97:2682-92. doi:10.1210/jc.2012-1083

86 Fiore E, Vitti P. Serum TSH and risk of papillary thyroid cancer in nodular thyroid disease. J Clin Endocrinol Metab 2012;97:1134-45. doi:10.1210/jc.2011-2735

87 Rago T, Fiore E, Scutari M, et al. Male sex, single nodularity, and young age are associated with the risk of finding a papillary thyroid cancer on fine-needle aspiration cytology in a large series of patients with nodular thyroid disease. Eur J Endocrinol 2010;162:763-70.doi:10.1530/EJE-09-0895

88 Shi RL, Liao T, Qu N, Liang F, Chen JY, Ji QH. The usefulness of preoperative thyroid-stimulating hormone for predicting differentiated thyroid microcarcinoma. Otolaryngol Head Neck Surg 2016;154:256-62. doi:10.1177/0194599815618388

89 Zheng J, Li C, Lu W, Wang C, Ai Z. Quantitative assessment of preoperative serum thyrotropin level and thyroid cancer. Oncotarget 2016;7:34918-29. doi:10.18632/oncotarget.9201

90 Trimboli P, Treglia G, Giovanella L. Preoperative measurement of serum thyroglobulin to predict malignancy in thyroid nodules: a systematic review. Horm Meta b Res 2015;47:247-52.

91 Brito JP, Yarur AJ, Prokop LJ, McIver B, Murad MH, Montori VM. Prevalence of thyroid cancer in multinodular goiter versus single nodule: a systematic review and meta-analysis. Thyroid 2013;23:449-55. doi:10.1089/thy.2012.0156

92 Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 2014;99:1253-63. doi:10.1210/jc.2013-2928

93 Gharib H, Papini E, Garber JR, et al, AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules–2016 Update. Endocr Pract 2016;22:622-39. doi:10.4158/EP161208.GL

94 Perros P, Boelaert K, Colley S, et al, British Thyroid Association. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014;81(Suppl 1):1-122. doi:10.1111/cen.12515

95 Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017;6:225-37. doi:10.1159/000478927

96 Shin JH, Baek JH, Chung J, et al,  Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016;17:370-95. doi:10.3348/kjr.2016.17.3.370

97 Gao L, Xi X, Jiang Y, et al. Comparison among TIRADS (ACR,TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules. Endocrine 2019;64:90-6. doi:10.1007/s12020-019-01843-x

98 Grani G, Lamartina L, Ascoli V, et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J Clin Endocrinol Metab 2019;104:95-102.

99 Ha EJ, Moon WJ, Na DG, et al. A Multicenter Prospective Validation Study for the Korean Thyroid Imaging Reporting and Data System in Patients with Thyroid Nodules. Korean J Radiol 2016;17:811-21. doi:10.3348/kjr.2016.17.5.811

100 Ha EJ, Na DG, Moon WJ, Lee YH, Choi N. Diagnostic Performance of Ultrasound-Based Risk-Stratification Systems for Thyroid Nodules: Comparison of the 2015 American Thyroid Association Guidelines with the 2016 Korean Thyroid Association/Korean Society of Thyroid Radiology and 2017 American College of Radiology Guidelines. Thyroid 2018;28:1532-7. doi:10.1089/thy.2018.0094

101 Ha SM, Baek JH, Na DG, et al. Diagnostic Performance of Practice Guidelines for Thyroid Nodules: Thyroid Nodule Size versus Biopsy Rates. Radiology 2019;291:92-9. doi:10.1148/radiol.2019181723

102 Lee JH, Han K, Kim EK, et al. Validation of the modified 4-tiered categorization system through comparison  with the 5-tiered categorization system of the 2015 American Thyroid Association guidelines for classifying small thyroid nodules on ultrasound. Head Neck 2017;39:2208-15. doi:10.1002/hed.24888

103 Middleton WD, Teefey SA, Reading CC, et al. Multiinstitutional Analysis of Thyroid Nodule Risk Stratification Using the American College of Radiology Thyroid Imaging Reporting and Data System. AJR Am J Roentgenol 2017;208:1331-41. doi:10.2214/AJR.16.17613

104 Middleton WD, Teefey SA, Reading CC, et al. Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines. AJR Am J Roentgenol 2018;210:1148-54. doi:10.2214/AJR.17.18822

105 Pandya A, Caoili EM, Jawad-Makki F, et al. Limitations of the 2015 ATA Guidelines for Prediction of Thyroid Cancer: A Review of 1947 Consecutive Aspirations. J Clin Endocrinol Metab 2018;103:3496-502. doi:10.1210/jc.2018-00792

106 Persichetti A, Di Stasio E, Guglielmi R, et al. Predictive Value of Malignancy of Thyroid Nodule Ultrasound Classification Systems: A Prospective Study. J Clin Endocrinol Metab 2018;103:1359-68. doi:10.1210/jc.2017-01708

107 Rosario PW, da Silva AL, Nunes MS, Ribeiro Borges MA, Mourão GF, Calsolari MR. Risk of malignancy in 1502 solid thyroid nodules >1 cm using the new ultrasonographic classification of the American Thyroid Association. Endocrine 2017;56:442-5. doi:10.1007/s12020-016-

1163-7

108 Wu XL, Du JR, Wang H, et al. Comparison and preliminary discusión of the reasons for the differences in diagnostic performance and unnecessary FNA biopsies between the ACR TIRADS and 2015 ATA guidelines. Endocrine 2019;65:121-31. doi:10.1007/s12020-019-01886-0

109 Xu T, Wu Y, Wu RX, et al. Validation and comparison of three newlyreleased Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine 2019;64:299-307. doi:10.1007/s12020-018-1817-8

110 Yoon SJ, Na DG, Gwon HY, et al. Similarities and Differences Between Thyroid Imaging Reporting and Data Systems. AJR Am J Roentgenol 2019;213:W76-84. doi:10.2214/AJR.18.20510

111 Zheng Y, Xu S, Kang H, Zhan W. A Single-Center Retrospective Validation Study of the American College of Radiology Thyroid Imaging Reporting and Data System. Ultrasound Q 2018;34:77-83. doi:10.1097/RUQ.0000000000000350

112 Valderrabano P, Klippenstein DL, Tourtelot JB, et al. New American Thyroid Association Sonographic Patterns for Thyroid Nodules Perform Well in Medullary Thyroid Carcinoma: Institutional Experience, Systematic Review, and Meta-Analysis. Thyroid 2016;26:1093-100. doi:10.1089/thy.2016.0196

113 Lauria Pantano A, Maddaloni E, Briganti SI, et al. Differences between ATA, AACE/ACE/AME and ACR TI-RADS ultrasound classifications performance in identifying cytological high-risk thyroid nodules. Eur J Endocrinol 2018;178:595-603. doi:10.1530/EJE-18-0083

114 Basha MAA, Alnaggar AA, Refaat R, et al. The validity and reproducibility of the thyroid imaging reporting and data system (TI-RADS) in categorization of thyroid nodules: Multicentre prospective study. Eur J Radiol 2019;117:184-92. doi:10.1016/j.ejrad.2019.06.015

115 Grani G, Lamartina L, Cantisani V, Maranghi M, Lucia P, Durante C. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018;7:1-7. doi:10.1530/EC-17-0336

116 Gao L, Liu R, Jiang Y, et al. Computer-aided system for diagnosing thyroid nodules on ultrasound: A comparison with radiologist-based clinical assessments. Head Neck 2018;40:778-83. doi:10.1002/hed.25049

117 Jeong EY, Kim HL, Ha EJ, Park SY, Cho YJ, Han M. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators. Eur Radiol 2019;29:1978-85. doi:10.1007/s00330-018-5772-9

118 Hammad AY, Noureldine SI, Hu T, Ibrahim Y, Masoodi HM, Kandil E. A meta-analysis examining the independent association between thyroid nodule size and malignancy. Gland Surg 2016;5:312-7. doi:10.21037/gs.2015.11.05

119 Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: a systematic review. Laryngoscope 2015;125:263-72. doi:10.1002/lary.24784

120 Park VY, Lee HS, Kim EK, Kwak JY, Yoon JH, Moon HJ. Frequencies and malignancy rates of 6-tiered Bethesda categories of thyroid nodules according to ultrasound assessment and nodule size. Head Neck 2018;40:1947-54. doi:10.1002/hed.25179

121 Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. Impact of Nodule Size on Malignancy Risk Differs according to the Ultrasonography Pattern of Thyroid Nodules. Korean J Radiol 2018;19:534-41. doi:10.3348/kjr.2018.19.3.534

122 Liu YI, Kamaya A, Desser TS, Rubin DL. A bayesian network for differentiating benign from malignant thyroid nodules using sonographic and demographic features. AJR Am J Roentgenol 2011;196:W598-605. doi:10.2214/AJR.09.4037

123 Angell TE, Maurer R, Wang Z, et al. A Cohort Analysis of Clinical and Ultrasound Variables Predicting Cancer Risk in 20,001 Consecutive Thyroid Nodules. J Clin Endocrinol Metab 2019;104:5665-72. doi:10.1210/jc.2019-00664

124 Polyzos SA, Anastasilakis AD. Clinical complications following thyroid fine-needle biopsy: a systematic review. Clin Endocrinol (Oxf) 2009;71:157-65. doi:10.1111/j.1365-2265.2009.03522.x

125 Cappelli C, Pirola I, Agosti B, et al. Complications after fine-needle aspiration cytology: a retrospective study of 7449 consecutive thyroid nodules. Br J Oral Maxillofac Surg 2017;55:266-9. doi:10.1016/j.bjoms.2016.11.321

126 Altavilla G, Pascale M, Nenci I. Fine needle aspiration cytology of thyroid gland diseases. Acta Cytol 1990;34:251-6.

127 Sebo TJ. What are the keys to successful thyroid FNA interpretation?Clin Endocrinol (Oxf) 2012;77:13-7. doi:10.1111/j.1365-2265.2012.04404.x

128 Moss WJ, Finegersh A, Pang J, et al. Needle Biopsy of Routine Thyroid Nodules Should Be Performed Using a Capillary Action Technique with 24- to 27-Gauge Needles: A Systematic Review and Meta-Analysis. Thyroid 2018;28:857-63. doi:10.1089/thy.2017.

129 Cross P, Chandra A, Giles T, et al. Guidance on the Reporting of Thyroid Cytology Specimens. 2016. https://www.rcpath.org/uploads/assets/7d693ce4-0091-4621-97f79e2a0d1034d6/g089_guidance_on_reporting_of_thyroid_cytology_specimens.pdf130 Nardi F, Basolo F, Crescenzi A, et al. Italian consensus for the classification and reporting of thyroid cytology. J EndocrinolInvest 2014;37:593-9. doi:10.1007/s40618-014-0062-0

131 Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho Simoes M. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J 2017;6:115-29. doi:10.1159/000468519

132 Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda System for Reporting Thyroid Cytopathology: a metaanalysis. Acta Cytol 2012;56:333-9. doi:10.1159/000339959

133 Witt BL, Schmidt RL. Rapid onsite evaluation improves the adequacy of fine-needle aspiration for thyroid lesions: a systematic review and meta-analysis. Thyroid 2013;23:428-35. doi:10.1089/thy.2012.0211

134 Beland MD, Anderson TJ, Atalay MK, Grand DJ, Cronan JJ. Resident experience increases diagnostic rate of thyroid fine-needle aspiration biopsies. Acad Radiol 2014;21:1490-4. doi:10.1016/j. acra.2014.06.006

135 Cibas ES, Ali SZ, NCI Thyroid FNA State of the Science Conference. The Bethesda System For Reporting Thyroid Cytopathology. Am J Clin Pathol 2009;132:658-65. doi:10.1309/AJCPPHLWMI3JV4LA

136 Baloch Z, LiVolsi VA, Jain P, et al. Role of repeat fine-needle aspiration biopsy (FNAB) in the management of thyroid nodules. Diagn Cytopathol 2003;29:203-6. doi:10.1002/dc.10361

137 Yassa L, Cibas ES, Benson CB, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 2007;111:508-16. doi:10.1002/cncr.23116

138 Sauter JL, Lehrke H, Zhang X, et al. Assessment of The Bethesda System for Reporting Thyroid Cytopathology. Am J Clin Pathol 2019;152:502-11. doi:10.1093/ajcp/aqz076

139 Ahn SH, Kim SD, Jeong WJ. Comparison of risk of malignancy in a subgroup with atypia of undetermined significance/folicular lesion of undetermined significance: A meta-analysis. Head Neck 2017;39:1699-710. doi:10.1002/hed.24768

140 Valderrabano P, Khazai L, Thompson ZJ, et al. Cancer Risk Associated with Nuclear Atypia in Cytologically Indeterminate Thyroid Nodules: A Systematic Review and Meta-Analysis. Thyroid 2018;28:210-9. doi:10.1089/thy.2017.0419

141 Cibas ES, Baloch ZW, Fellegara G, et al. A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann Intern Med 2013;159:325-32. doi:10.7326/0003-4819-159-5-201309030-00006

142 Gerhard R, Boerner SL. The value of second opinion in thyroid cytology: a review. Cancer Cytopathol 2014;122:611-9. doi:10.1002/cncy.21436

143 Cao H, Kao RH, Hsieh MC. Comparison of core-needle biopsy and fine-needle aspiration in screening for thyroid malignancy: a systematic review and meta-analysis. Curr Med Res Opin 2016;32:1291-301. doi:10.1185/03007995.2016.1170674

144 Wolinski K, Stangierski A, Ruchala M. Comparison of diagnostic yield of core-needle and fine-needle aspiration biopsies of thyroid lesions: Systematic review and meta-analysis. Eur Radiol 2017;27:431-6. doi:10.1007/s00330-016-4356-9

145 Chung SR, Suh CH, Baek JH, Choi YJ, Lee JH. The role of core needle biopsy in the diagnosis of initially detected thyroid nodules: a systematic review and meta-analysis. Eur Radiol 2018;28:4909-18. doi:10.1007/s00330-018-5494-z

146 Ha EJ, Suh CH, Baek JH. Complications following ultrasound-guided core needle biopsy of thyroid nodules: a systematic review and metaanalysis. Eur Radiol 2018;28:3848-60. doi:10.1007/s00330-018-5367-5

147 Cipriani NA, White MG, Angelos P, Grogan RH. Large Cytologically Benign Thyroid Nodules Do Not Have High Rates of Malignancy or False-Negative Rates and Clinical Observation Should be Considered: A Meta-Analysis. Thyroid 2018. doi:10.1089/thy.2018.0221

148 Nam SJ, Kwak JY, Moon HJ, Yoon JH, Kim EK, Koo JS. Large (≥3cm) thyroid nodules with benign cytology: Can Thyroid Imaging Reporting and Data System (TIRADS) help predict false-negative cytology?PLoS One 2017;12:e0186242. doi:10.1371/journal.pone.0186242

149 Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 2012;367:705-15. doi:10.1056/NEJMoa1203208

150 Borowczyk M, Szczepanek-Parulska E, Olejarz M, et al. Evaluation of 167 Gene Expression Classifier (GEC) and ThyroSeq v2 Diagnostic Accuracy in the Preoperative Assessment of Indeterminate Thyroid Nodules: Bivariate/HROC Meta-analysis. Endocr Pathol 2019;30:8-15. doi:10.1007/s12022-018-9560-5

151 Bose S, Sacks W, Walts AE. Update on Molecular Testing for Cytologically Indeterminate Thyroid Nodules. Adv Anat Pathol 2019;26:114-23. doi:10.1097/PAP.0000000000000211

152 Klubo-Gwiezdzinska J, Wartofsky L. The Role of Molecular Diagnostics in the Management of Indeterminate Thyroid Nodules. J Clin Endocrinol Metab 2018;103:3507-10. doi:10.1210/jc.2018-01081 153 Labourier E, Shifrin A, Busseniers AE, et al. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules With Indeterminate Cytology. J Clin Endocrinol Metab 2015;100:2743-50. doi:10.1210/jc.2015-1158

154 Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015;25:1217-23. doi:10.1089/thy.2015.0305

155 Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 2018;124:1682-90. doi:10.1002/cncr.31245

156 Patel KN, Angell TE, Babiarz J, et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg 2018;153:817-24. doi:10.1001/jamasurg.2018.1153

157 Santhanam P, Khthir R, Gress T, et al. Gene expression classifier for the diagnosis of indeterminate thyroid nodules: a meta-analysis. Med Oncol 2016;33:14. doi:10.1007/s12032-015-0727-3

158 Steward DL, Carty SE, Sippel RS, et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol 2019;5:204-12. doi:10.1001/jamaoncol.2018.4616

159 Vargas-Salas S, Martínez JR, Urra S, et al. Genetic testing for indeterminate thyroid cytology: review and meta-analysis. Endocr Relat Cancer 2018;25:R163-77. doi:10.1530/ERC-17-0405

160 Lithwick-Yanai G, Dromi N, Shtabsky A, et al. Multicentre validation of a microRNA-based assay for diagnosing indeterminate

thyroid nodules utilising fine needle aspirate smears. J Clin Pathol 2017;70:500-7. doi:10.1136/jclinpath-2016-204089

161 Nishino M. Molecular cytopathology for thyroid nodules: A review of methodology and test performance. Cancer Cytopathol 2016;124:14-27. doi:10.1002/cncy.21612

162 Ferris RL, Baloch Z, Bernet V, et al, American Thyroid Association Surgical Affairs Committee. American Thyroid Association Statement on Surgical Application of Molecular Profiling for Thyroid Nodules: Current Impact on Perioperative Decision Making. Thyroid 2015;25:760-8. doi:10.1089/thy.2014.0502

163 Valderrabano P, Leon ME, Centeno BA, et al. Institutional prevalence of malignancy of indeterminate thyroid cytology is necessary but insufficient to accurately interpret molecular marker tests. Eur J Endocrinol 2016;174:621-9. doi:10.1530/EJE-15-1163

164 Jug RC, Datto MB, Jiang XS. Molecular testing for indeterminate thyroid nodules: Performance of the Afirma gene expresión classifier and ThyroSeq panel. Cancer Cytopathol 2018;126:471-80. doi:10.1002/cncy.21993

165 Sahli ZT, Smith PW, Umbricht CB, Zeiger MA. Preoperative Molecular Markers in Thyroid Nodules. Front Endocrinol (Lausanne) 2018;9:179. doi:10.3389/fendo.2018.00179

166 Angell TE, Heller HT, Cibas ES, et al. Independent Comparison of the Afirma Genomic Sequencing Classifier and Gene Expression Classifier for Cytologically Indeterminate Thyroid Nodules. Thyroid 2019;29:650-6. doi:10.1089/thy.2018.0726

167 Endo M, Nabhan F, Porter K, et al. Afirma Gene Sequencing Classifier Compared with Gene Expression Classifier in Indeterminate Thyroid Nodules. Thyroid 2019;29:1115-24. doi:10.1089/thy.2018.0733

168 Harrell RM, Eyerly-Webb SA, Golding AC, Edwards CM, Bimston DN. Statistical Comparison of Afirma Gsc and Afirma Gec Outcomes in a Community Endocrine Surgical Practice: Early Findings. Endocr Pract 2019;25:161-4. doi:10.4158/EP-2018-0395

169 Valderrabano P, Khazai L, Leon ME, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer 2017;24:127-36. doi:10.1530/ERC-16-0512

170 Taye A, Gurciullo D, Miles BA, et al. Clinical performance of a next-generation sequencing assay (ThyroSeq v2) in the evaluation of indeterminate thyroid nodules. Surgery 2018;163:97-103. doi:10.1016/j.surg.2017.07.032

171 Ohori NP, Landau MS, Carty SE, et al. Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathol 2019;127:161-8. doi:10.1002/cncy.22088

172 Marcadis AR, Valderrabano P, Ho AS, et al. Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules. Surgery 2019;165:17-24. doi:10.1016/j.surg.2018.04.062

173 Baca SC, Wong KS, Strickland KC, et al. Qualifiers of atypia in the cytologic diagnosis of thyroid nodules are associated with different Afirma gene expression classifier results and clinical outcomes. Cancer Cytopathol 2017;125:313-22. doi:10.1002/cncy.21827

174 Valderrabano P, Hallanger-Johnson JE, Thapa R, Wang X, McIver B. Comparison of Postmarketing Findings vs the Initial Clinical Validation Findings of a Thyroid Nodule Gene Expression Classifier: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg 2019. doi:10.1001/jamaoto.2019.1449

175 Al-Qurayshi Z, Deniwar A, Thethi T, et al. Association of Malignancy Prevalence With Test Properties and Performance of the Gene Expression Classifier in Indeterminate Thyroid Nodules. JAMA Otolaryngol Head Neck Surg 2017;143:403-8. doi:10.1001/jamaoto.2016.3526

176 Noureldine SI, Najafian A, Aragon Han P, et al. Evaluation of the Effect of Diagnostic Molecular Testing on the Surgical Decision-Making Process for Patients With Thyroid Nodules. JAMA Otolaryngol Head Neck Surg 2016;142:676-82. doi:10.1001/jamaoto.2016.0850

177 Aragon Han P, Olson MT, Fazeli R, et al. The impact of molecular testing on the surgical management of patients with thyroid nodules. Ann Surg Oncol 2014;21:1862-9. doi:10.1245/s10434-014-3508-x }

178 Brauner E, Holmes BJ, Krane JF, et al. Performance of the Afirma Gene Expression Classifier in Hürthle Cell Thyroid Nodules Differs from Other Indeterminate Thyroid Nodules. Thyroid 2015;25:789-96. doi:10.1089/thy.2015.0049

179 Valderrabano P, Khazai L, Thompson ZJ, et al. Impact of oncogene panel results on surgical management of cytologically indeterminate thyroid nodules. Head Neck 2018;40:1812-23. doi:10.1002/hed.25165

180 Lee L, How J, Tabah RJ, Mitmaker EJ. Cost-effectiveness of molecular testing for thyroid nodules with atypia of undetermined significance cytology. J Clin Endocrinol Metab 2014;99:2674-82. doi:10.1210/jc.2014-1219

181 Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW. Costeffectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 2011;96:E1719-26. doi:10.1210/jc.2011-0459

182 Kim SK, Lee JH, Woo JW, et al. Prediction Table and Nomogram as Tools for Diagnosis of Papillary Thyroid Carcinoma: Combined Analysis of Ultrasonography, Fine-Needle Aspiration Biopsy, and BRAF V600E Mutation. Medicine (Baltimore) 2015;94:e760. doi:10.1097/MD.0000000000000760

183 Nixon IJ, Ganly I, Hann LE, et al. Nomogram for predicting malignancy in thyroid nodules using clinical, biochemical, ultrasonographic, and cytologic features. Surgery 2010;148:1120-7, discussion 1127-8. doi:10.1016/j.surg.2010.09.030

184 Canfarotta M, Moote D, Finck C, et al. McGill Thyroid Nodule Score in Differentiating Benign and Malignant Pediatric Thyroid Nodules: A Pilot Study. Otolaryngol Head Neck Surg 2017;157:589-95. doi:10.1177/0194599817715629

185 Khalife S, Bouhabel S, Forest VI, et al. The McGill Thyroid Nodule Score’s (MTNS+) role in the investigation of thyroid nodules with benign ultrasound guided fine needle aspiration biopsies: a retrospective review. J Otolaryngol Head Neck Surg 2016;45:29. doi:10.1186/s40463-016-0141-7

186 Varshney R, Forest VI, Mascarella MA, et al. The Mcgill thyroid nodule score - does it help with indeterminate thyroid nodules?J Otolaryngol Head Neck Surg 2015;44:2. doi:10.1186/s40463-015-0058-6

187 Sands NB, Karls S, Amir A, et al. McGill Thyroid Nodule Score (MTNS): “rating the risk,” a novel predictive scheme for cancer risk determination. J Otolaryngol Head Neck Surg 2011;40(Suppl 1):S1-13.

188 Ianni F, Campanella P, Rota CA, et al. A meta-analysis-derived proposal for a clinical, ultrasonographic, and cytological scoring system to evaluate thyroid nodules: the “CUT” score. Endocrine 2016;52:313-21. doi:10.1007/s12020-015-0785-5

189 Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. Cytology-Ultrasonography Risk-Stratification Scoring System Based on Fine-Needle Aspiration Cytology and the Korean-Thyroid Imaging Reporting and Data System. Thyroid 2017;27:953-9. doi:10.1089/thy.2016.0603

190 Valderrabano P, McGettigan MJ, Lam CA, et al. Thyroid Nodules with Indeterminate Cytology: Utility of the American Thyroid

Association Sonographic Patterns for Cancer Risk Stratification. Thyroid 2018;28:1004-12. doi:10.1089/thy.2018.0085

191 Hoang JK, Langer JE, Middleton WD, et al. Managing incidental thyroid nodules detected on imaging: white paper of the ACR Incidental Thyroid Findings Committee. J Am Coll Radiol 2015;12:143-50. doi:10.1016/j.jacr.2014.09.038

192 Rodriguez-Gutierrez R, Gionfriddo MR, Ospina NS, et al. Shared decision making in endocrinology: present and future directions. Lancet Diabetes Endocrinol 2016;4:706-16. doi:10.1016/S2213-8587(15)00468-4

193 Singh Ospina N, Castaneda-Guarderas A, Ward R, et al. Patients’ knowledge about the outcomes of thyroid biopsy: a patient survey. Endocrine 2018;61:482-8. doi:10.1007/s12020-018-1639-8

194 Hargraves IG, Montori VM, Brito JP, et al. Purposeful SDM: A problem-based approach to caring for patients with shared decisión making. Patient Educ Couns 2019;102:1786-92. doi:10.1016/j.pec.2019.07.020

195 Brito JP, Ito Y, Miyauchi A, Tuttle RM. A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid 2016;26:144-9. doi:10.1089/thy.2015.0178

196 Camargo R, Corigliano S, Friguglietti C, et al, Latin American thyroid society. Latin American thyroid society recommendations for the management of thyroid nodules. Arq Bras Endocrinol Metabol 2009;53:1167-75. doi:10.1590/S0004-27302009000900014

197 Singh Ospina N, Maraka S, Espinosa DeYcaza A, et al. Diagnostic accuracy of thyroid nodule growth to predict malignancy in thyroid nodules with benign cytology: systematic review and meta-analysis. Clin Endocrinol (Oxf) 2016;85:122-31. doi:10.1111/cen.12975

198 Clark TJT, Pokharel S, Meier J, Wang C, Maximin S. Thyroid Nodule Doubling Time is Not a Reliable Indicator of Benign or Malignant Nature. Ultrasound Q 2016;32:132-5. doi:10.1097/RUQ.0000000000000190

199 Kim M, Chung SR, Jeon MJ, et al. Determining Whether Tumor Volume Doubling Time and Growth Rate Can Predict Malignancy BMJ: first

After Delayed Diagnostic Surgery of Follicular Neoplasm. Thyroid 2019;29:1418-24. doi:10.1089/thy.2019.0017

200 Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014;24:27-34. doi:10.1089/thy.2013.0367

201 Sugitani I, Toda K, Yamada K, Yamamoto N, Ikenaga M, Fujimoto Y. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg 2010;34:1222-31. doi:10.1007/s00268-009-0359-x

202 Papini E, Pacella CM, Misischi I, et al. The advent of ultrasoundguided ablation techniques in nodular thyroid disease: towards a patient-tailored approach. Best Pract Res Clin Endocrinol Metab 2014;28:601-18. doi:10.1016/j.beem.2014.02.004

203 Papini E, Gugliemi R, Pacella CM. Laser, radiofrequency, and ethanol ablation for the management of thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2016;23:400-6. doi:10.1097/MED.0000000000000282

204 Bandeira-Echtler E, Bergerhoff K, Richter B. Levothyroxine or minimally invasive therapies for benign thyroid nodules. Cochrane Database Syst Rev 2014;(6):CD004098. doi:10.1002/14651858.CD004098.pub2

205 Vuong NL, Dinh LQ, Bang HT, Thuy TTM, Bac NH, Vy TT. Radiofrequency Ablation for Benign Thyroid Nodules: 1-Year Follow-Up in 184 Patients. World J Surg 2019;43:2447-53. doi:10.1007/

s00268-019-05044-5

206 Pacella CM, Mauri G, Cesareo R, et al. A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: a propensity score matching analysis. Int J Hyperthermia 2017;33:911-9. doi:10.1080/02656736.2017.1332395

207 Morelli F, Sacrini A, Pompili G, et al. Microwave ablation for thyroid nodules: a new string to the bow for percutaneous treatments?Gland Surg 2016;5:553-8. doi:10.21037/gs.2016.12.07

 

Comentarios

Usted debe ingresar al sitio con su cuenta de usuario IntraMed para ver los comentarios de sus colegas o para expresar su opinión. Si ya tiene una cuenta IntraMed o desea registrase, ingrese aquí

Contenidos relacionados
Los editores le recomiendan continuar con las siguientes lecturas:
AAIP RNBD
Términos y condiciones de uso | Todos los derechos reservados | Copyright 1997-2020