Screening Travelers at Borders During a Pandemic: Some Thoughts About Tools

Peter Houck, MD
Division of Global Migration and Quarantine
Centers for Disease Control and Prevention
Seattle, Washington
Disclaimer

The following material does not necessarily represent current or future US Government or CDC policy. It is presented solely to stimulate discussion.
Agenda

• Why screen?
 – Exit screening
 – Entry screening
• Passive Screening
• Active Screening
 – Visual inspection
 – Health declarations
 – Thermal imaging
 – Rapid tests for influenza
• Discussion of issues
Screening in a Layered Pandemic Defense

- Quarantine, isolation
- **Health screening at port of entry**
- En route screening
- **Health screening at port of embarkation**

- **Containment at source (WHO Rapid Reaction):** e.g., travel restriction, antivirals, quarantine and isolation
Exit Screening

• Goal to prevent spread from “hot” zone to “cold” zone
• Addressed by International Health Regulations (WHO)
• Tools could be same as used for entry screening
• Issues largely the same as for entry screening
• Not currently recommended by WHO
Goals of Entry Screening

1. Delay disease transmission and outbreak peak
2. Decompress peak burden on healthcare infrastructure
3. Diminish overall cases and health impacts
4. Do NOT expect to prevent entry into country
Primary and Secondary Screening at Borders

Primary Screening
- Visual
- Health declaration (questionnaire)
- Possibly thermal imaging (?)

Secondary Screening
- Extensive interview
- Physical examination
- Oral/otic temperature measurement
- Diagnostic testing (rapid test/PCR)
- Detainment, isolation, quarantine (includes conditional release)
Some Important Definitions

• Sensitivity: Ability to identify persons who *have* a disease

 \[
 \frac{\text{# of persons with true positive screening results}}{\text{# of persons who really have the disease}}
 \]

• Specificity: Ability to identify persons who *do not have* a disease

 \[
 \frac{\text{# of persons with true negative screening results}}{\text{# of persons who really do not have the disease}}
 \]
More Important Definitions

• **Positive Predictive Value (PPV):** How likely a person with a positive screening result is to *really have* the disease.

 \[
 \text{PPV} = \frac{\text{# of persons with true positive screening results}}{\text{Total # of persons with a positive screening result}}
 \]

• **Negative Predictive Value (NPV):** How likely a person with a negative screening result is to *really not have* the disease.

 \[
 \text{NPV} = \frac{\text{# of persons with true negative screening results}}{\text{Total # of persons with a negative screening result}}
 \]
Passive Screening

• Enhanced awareness, but no special actions taken
 – Respond to reports from:
 1. Flight and ship crew
 2. Customs and immigration officers
 3. Ill passengers
 4. Health departments or physicians after travel completed
Where?: Current CDC Quarantine Stations
Date of Travel for Novel H1N1 Case-Travelers Reported to CDC Quarantine Stations, April 1 - May 31, 2009 (n=107)

<table>
<thead>
<tr>
<th>Date of Travel</th>
<th># of Case-Travelers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/2</td>
<td>1</td>
</tr>
<tr>
<td>4/9</td>
<td>1</td>
</tr>
<tr>
<td>4/16</td>
<td>2</td>
</tr>
<tr>
<td>4/23</td>
<td>3</td>
</tr>
<tr>
<td>4/30</td>
<td>12</td>
</tr>
<tr>
<td>5/7</td>
<td>4</td>
</tr>
<tr>
<td>5/14</td>
<td>5</td>
</tr>
<tr>
<td>5/21</td>
<td>1</td>
</tr>
<tr>
<td>5/28</td>
<td>1</td>
</tr>
</tbody>
</table>

Confirmed, **Probable**, **Suspect**
Screening Results, April-May 2009

- 107 cases during two month period
- 30% confirmed
- 50% of reports in California and Texas
- 55% associated with air travel
- 52% reported during travel, 48% after
- ~20% asymptomatic during travel
Passive Screening....Impressions

- Doesn’t require additional resources
- Sensitivity unknown because we don’t know how many cases it missed
- Limited by number of infected travelers who had no symptoms
- Did not detect very many cases, but may have met our goals
Visual Inspection

Scott Stantis, *The Birmingham News*, 4/2/03
Draft Health Declaration

U.S. Health Declaration Form

Passenger & Crew

- **Today's date:** day __ month __ year __
- **Airliner:** __
- **Flight number:** __
- **Seat Number:** __
- **Seat number if moved:** __
- **Family name:** __
- **First name:** __ (given)
- **Middle name:** __
- **Passport issued by (country):** __
- **Passport number:** __

A. To answer each question, please mark an X in the YES or NO box:

- **Have you felt like you had a fever or chills in the last 24 hours?** [] YES [] NO
- **Do you have a cough or have difficulty breathing?** [] YES [] NO
- **In the last 7 days, have you been in or spent time with someone who had a fever and cough?** [] YES [] NO

If YES to any of the questions above, please inform the crew on your plane.

B. Please list all the countries you have been (including where you live) in the last 7 days:

- **List in order with most recent country first.**
- **List countries where your plane stopped if you got off the plane.**

1. __
2. __
3. __
4. __
5. __
6. __

1. **Please list the names of all persons traveling with you on this flight:**

2. **Are you traveling with a group on this flight?** [] YES [] NO
3. **If yes, name of group:** __

For U.S. Port of Entry Staff Only

For DHS use (Primary Screening):
- **Thermal Scanner:** positive negative
- **PH Secondary: YES NO**

For HHS use (Secondary Screening):
- **For DHS use (Primary Screening):**
- **Thermal Scanner:** positive negative
- **PH Secondary: YES NO**

Continued on other side...
A. To answer each question, please mark an X in the YES or NO box:

Have you felt like you had a fever or chills in the last 24 hours?

Do you have a cough or have difficulty breathing?

In the last 7 days, have you been near or spent time with someone who had a fever and cough?

If YES to any of the questions above, please inform the crew on your plane.

B. Please list all the countries where you have been (including where you live) in the last 7 days:
- List in order with most recent country first.
- List countries where your plane stopped if you got off the plane.

1.
2.
3.
4.
5.
6.
Health Declaration

- Usefulness depends on honesty
- Sensitivity varies with the questions asked
Predictive Value of Clinical Findings for Laboratory Confirmation of Influenza in 1,934 Clinic Patients

<table>
<thead>
<tr>
<th>Sign/symptom</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Multiple criteria*</td>
<td>0.36</td>
<td>0.88</td>
</tr>
<tr>
<td>2. Fever</td>
<td>0.30</td>
<td>0.92</td>
</tr>
<tr>
<td>3. Cough</td>
<td>0.20</td>
<td>0.87</td>
</tr>
<tr>
<td>4. Sore throat</td>
<td>0.19</td>
<td>0.83</td>
</tr>
</tbody>
</table>

PPV = Positive predictive value
NPV = Negative predictive value
*Influenza epidemic plus 4 of: sudden onset, cough, chills, fever, weakness, headache, myalgia, absence of red throat, influenza in close contacts

Clinical Influenza Definitions vs. Laboratory Confirmation in Household Population

<table>
<thead>
<tr>
<th>Definition</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fever 38°C or 2 of symptoms *</td>
<td>0.57</td>
<td>0.81</td>
</tr>
<tr>
<td>2. At least 2 of symptoms †</td>
<td>0.57</td>
<td>0.90</td>
</tr>
<tr>
<td>3. Fever ‡ plus cough or sore throat</td>
<td>0.48</td>
<td>0.97</td>
</tr>
<tr>
<td>4. Fever ‡ plus cough or runny nose</td>
<td>0.48</td>
<td>0.98</td>
</tr>
<tr>
<td>5. Fever ‡ only</td>
<td>0.48</td>
<td>0.98</td>
</tr>
</tbody>
</table>

* Symptoms are headache, runny nose, sore throat, aches or pains in muscles or joints, cough, or fatigue.
† Symptoms are fever, cough, headache, sore throat, aches or pains in muscles or joints.
‡ Temperature ≥ 37.8°C.

Infrared Thermal Detection Systems (ITDS): Fever Screening to Detect Infectious Disease
Hand-held “point and shoot” devices to ...
... sophisticated thermal cameras.
Estimating Temperature: ITDS
Sample Output

Image from McBride et al, 2007
Initial Use of ITDS in a Public Health Setting – SARS, 2003

- First used in Singapore
- Combined data: Singapore, China, Hong Kong, and Canada
 - Entry: > 35 million travelers
 - Exit: > 7 million travelers
 - No SARS detected (but detected fevers)
 - Low prevalence among travelers

“Normal” Body Temperatures

• “Normal” temperature isn’t a point, but a range
• Varies within and between individuals
 – Age
 – Diurnal variation
 – Ovulation, pregnancy, menopause
 – Chronic disease
 – Medications
• Accuracy of temperature measurements:
 – Pulmonary artery > urinary bladder > esophageal > rectal > oral > tympanic > axillary *

“Fever”

- Many definitions, but essentially “above normal” core body temperature
- Single temperature measurement may be misleading
 - For any infection, fever is affected by natural progression of disease
 - May be affected by use of antipyretic medications
ITDS as Instruments of Human Temperature Measurement

• ITDS measure surface temperature using infrared radiation
• Core temperature is estimated from surface temperature
 – Surface temperature usually lower than core temperature
 – Relationship between surface and core temperatures varies by individual
ITDS: Subject to Many Variables

- **Camera**
 - Differences between models
 - Operator training and experience
 - Distance and angle between camera and passengers
 - Pre-set cutoff temperature vs. “moving reference”

- **Environment**
 - Ambient temperature
 - Humidity

- **Passenger**
 - Physical activity
 - Perspiration
 - Alcohol
 - Hot beverages
 - Smoking

- **Passenger behavior**
 - Rapidity of screening process
 - Make up, glasses
Sensitivity and Specificity for Fever

• Sensitivity and specificity chosen using a “cutoff” temperature value
 – Low cutoff → detect everyone who has a “fever,” i.e. maximum sensitivity
 – High cutoff → minimize false positives, i.e. maximum specificity

• Sensitivity can only be increased at the expense of specificity
ITDS Sensitivity and Specificity for Fever

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Sens. (95% C.I.)</th>
<th>Spec. (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 33</td>
<td>100 (93 – 100)</td>
<td>0 (0 – 2)</td>
</tr>
<tr>
<td>> 36.1</td>
<td>85 (72 – 94)</td>
<td>93 (89 – 96)</td>
</tr>
<tr>
<td>> 36.3</td>
<td>85 (72 – 94)</td>
<td>95 (92 – 97)</td>
</tr>
<tr>
<td>> 36.6</td>
<td>75 (60 – 86)</td>
<td>99 (96 – 100)</td>
</tr>
<tr>
<td>> 37</td>
<td>68 (52 – 80)</td>
<td>100 (98 – 100)</td>
</tr>
</tbody>
</table>

C.I. = confidence interval

Projected Positive Predicted Value for Fever Based on Prevalence

<table>
<thead>
<tr>
<th>Prevalence (No. per 1000)</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.002</td>
</tr>
<tr>
<td>1</td>
<td>0.017</td>
</tr>
<tr>
<td>10</td>
<td>0.147</td>
</tr>
</tbody>
</table>

Assumptions (from Ng 2004)
- Sensitivity 85%
- Specificity 95%
International SARS Experience with ITDS

<table>
<thead>
<tr>
<th>Country</th>
<th>No. scanned (millions)</th>
<th>No. febrile by scan (per 100,000)</th>
<th>PPV for fever *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada*</td>
<td>4</td>
<td>31</td>
<td>0.07 (subset)</td>
</tr>
<tr>
<td>Taiwan†</td>
<td>8</td>
<td>275</td>
<td>0.14</td>
</tr>
<tr>
<td>Australia‡</td>
<td>0.18</td>
<td>579</td>
<td>0.12</td>
</tr>
</tbody>
</table>

PPV = positive predictive value

* Confirmatory fever cutoff range: 37.5 – 38°C

‡ McBride et al. 2007; Final report (118 pp).
Advantages of ITDS for Mass Fever Screening

• Rapid
• High volume
• Non-contact
• Non-invasive
• Objective
• ? Effect on honesty
Disadvantages of ITDS for Mass Fever Screening

- Personnel requirement
 - 100–500+ to run system at 20–25 IPOE
 - Trainers
 - Technicians
 - Used when human resources will be very limited
- Delay to travelers
- Space requirements
Fever Screening for Influenza Detection

- Proportion of travelers with fever or influenza-like illness (ILI) * is unknown
- Estimated community prevalence of fever †
 - Summer 0.8%
 - Winter 2%
- Many influenza infections do not result in fever

* CDC definition of ILI: Fever ≥100°F (37.8°C) AND cough and/or sore throat (in the absence of a known cause other than influenza)
http://www.cdc.gov/flu/weekly/fluactivity.htm

† Kaufman et al. IMAJ. 2006; 8: 563-7
Sensitivity and Specificity of Individual Symptoms for Influenza

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever*</td>
<td>0.67</td>
<td>0.56</td>
<td>0.59</td>
<td>0.67</td>
</tr>
<tr>
<td>Cough*</td>
<td>0.92</td>
<td>0.23</td>
<td>0.52</td>
<td>0.75</td>
</tr>
<tr>
<td>Sore throat†</td>
<td>0.83</td>
<td>0.24</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>Rhinorrhea‡</td>
<td>0.76</td>
<td>0.32</td>
<td>0.22</td>
<td>0.84</td>
</tr>
</tbody>
</table>

PPV = positive predictive value NPV = negative predictive value

Combined data from:

* N = 6278 † N = 5678 ‡ N = 2534
Limitations of ITDS for Influenza Screening

- Detect fever, not infections
- Cannot detect incubating or afebrile infected individuals (low sensitivity)
- Cannot distinguish infection of interest from other febrile conditions (low specificity)
- Results can have modest predictive value
Summary of surveillance for SARS at points of transit as of June 30, 2003, Beijing

<table>
<thead>
<tr>
<th>Transit site</th>
<th>Number of people screened for fever</th>
<th>Number (%) febrile</th>
<th>Number (%) with SARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport – international</td>
<td>275,600</td>
<td>496 (0.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Airport – domestic</td>
<td>952,200</td>
<td>1,449 (0.2%)</td>
<td>10 (0.001%)</td>
</tr>
<tr>
<td>Train stations</td>
<td>5,246,100</td>
<td>2,575 (0.05%)</td>
<td>2(<0.001%)</td>
</tr>
<tr>
<td>Roads</td>
<td>7,365,600</td>
<td>577 (0.008%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Zonghan Zhu, M.D., Beijing Municipal Health Bureau, IEIDC Quarantine Conf 2004
Secondary Screening

- Confirms primary result
- Makes more firm diagnosis
- Rapid influenza tests…modest sensitivity
- PCR not always available
- What to do with (-) rapid test result?
What Happens after We Screen?

• Possible actions include:
 – Isolation of ill passengers
 – Diagnosis and management of ill persons
 – Quarantine of contacts
 – Written and verbal notices and instructions
 – Denial of travel (exit screening)
 – Denial of entry

• Actions implemented depending on:
 – Perceived risk posed by the traveler
 – Pandemic severity
 – Timing and extent of pandemic disease, etc.

Approach is flexible and balances public health benefits, operational feasibility, and economic, social and international impacts
Screening Summary

• Any single tool has limitations
• Using several tools can overcome some individual limitations
• What to do with traveler when results at border uncertain?
• Decisions based on many factors, including:
 – Resources available
 – Severity of outbreak and disease
 – Costs: direct, “opportunity”, social, indirect economic
 – Potential benefits: health, social, economic
 – Balance of costs and potential benefits
Future Research

• What approaches were taken?
• What were the results around world?
• What effect did screening have on outbreak in different situations?

WHO and International Civil Aviation Organization (ICAO) developing a project to address these questions....Watch for it
Muchas Gracias!

Thank You!
USG Border/ POE Responses

Border Closures - No
Active Entry Screening - No
Active Exit Screening - No

Travel Advisories- Yes, Early
Level 4, 3 - Alert & Precaution Mexico,
Level 2 Outbreak Notices, US

Enhanced Passive Disease Surveillance - Yes
Active Educational Efforts - Yes
U.S. Exit Screening – Decision Briefing May 15

• US travel associated with ~ 5% of international cases outside of Canada and Mexico to date

• March 28* - May 11, ~6,477,377 passengers departed the US for countries other than Mexico and Canada

*Symptom onset of first suspect case U.S.; CDC received specimen on April 17
Rate per Million Travelers

May 15

Confirmed International Cases Associated with Travel from North America (March 28 to May 11, 2009)

<table>
<thead>
<tr>
<th>Country</th>
<th># of Cases (%)</th>
<th>Rate per million travelers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>220 (70%)</td>
<td>504</td>
</tr>
<tr>
<td>US</td>
<td>16 (5%)</td>
<td>2.5*</td>
</tr>
<tr>
<td>Canada</td>
<td>3 (1%)</td>
<td>9.4</td>
</tr>
<tr>
<td>No travel</td>
<td>76 (24%)</td>
<td></td>
</tr>
</tbody>
</table>

* 3200 travel-related cases in the U.S. would be needed to match the rate seen in Mexico
Exit Screening in U.S. May 15?

33 countries had reported cases

• Screening of all 8.4 million outbound U.S. travelers in May 2009
 129 true positive
 84,227 false positives

• Test: 99% sensitive and 99% specific
International Public Health Measures*
156 countries - June 29 –
55 countries with 70,893 confirmed cases

- 104 (67%) countries screening travellers for ILI
 - Thermal scanners used by 48/104 countries
 - 5/48 (10%) departing travelers
 - 21/48 (44%) arriving travellers from affected regions
 - 32/48 (67%) arriving travellers from all countries
- 17 (11%) countries cancel trips
- 57 (36%) countries have travel advisories
- 54 (35%) countries impose trade bans
- 38 (24%) countries impose quarantine measures

*Source: Global Public Health Intelligence Network
Immediate Consequences

- Hold aircraft
- Hold passengers and crew
- Flight disruptions
- Economic impact
Contacts: Risk Assessment

150 travelers arriving by air

- Ill traveler: Isolate and evaluate
- Long-term contact(s) (>24 hrs)
- Short-term contact(s) (<24 hrs)
But, Who is Really a Contact of an Ill Passenger?

Who is at risk for infection?
Who should be quarantined?
The Filtration System

- High-efficiency particulate (HEPA-type) filters are used on Boeing aircraft
- Similar filters are used in critical hospital wards and industrial clean rooms
- Filters are rated at 0.3 micron-diameter particles
- Filter efficiency increases over time
Filter Efficiencies of Planes, Trains and Buildings

- **94% efficiency airplanes**: ****
- **99.97% efficiency airplanes and critical wards of hospitals**: ****
- **80-85% efficiency trains**: *
- **90-95% efficiency hospitals**: *
- **60-65% efficiency office buildings**: *
- **25-30% efficiency office buildings**: *

Common type filters not tested at smaller particle size

- **ASHRAE 52-76**
- **(IEST) Filter type “B” VERV17**
Cabin Air Flow

Conditioned air distribution duct

Conditioned air

Cabin air exhaust (return air grille)
Transmission of the Severe Acute Respiratory Syndrome on Aircraft

<table>
<thead>
<tr>
<th>Duration</th>
<th>Aircraft</th>
<th>Illness</th>
<th>No. on Flight</th>
<th>No. (%) Infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hrs</td>
<td>737</td>
<td>Fever/cough (1)</td>
<td>120</td>
<td>22 (18.3)</td>
</tr>
</tbody>
</table>

Long-term Contacts* (≥ 24 hours)

- Likely to be only a small number of passengers (e.g. travel companions)
- Time from first exposure to final travel destination is ≥ 24 hours – possibly become infectious during onward travel
- Quarantine *in situ, (no forward travel)* - options may include on- or off-airport facilities, (i.e., hotels, civic centers), and other locally identified structures

Of confirmed or suspect pandemic influenza
Short-term Contacts* (<24 hours)

- Most passengers will be in this category
- Time from first exposure to travel destination is <24 hours – less likely to become infectious during onward travel
- Conditional release – send forward to destination with a number of requirements
 - HHS
 - Collects destination contact information and health information
 - Provides post-exposure prophylaxis if available
 - Distributes information and instructions to passengers
 - Passengers
 - Proceed home and self-quarantine/self-monitor
 - Report symptoms to local health authorities/provider

* Of confirmed or suspect pandemic influenza
What would trigger active surveillance under the U.S. Risk Based Border Strategy?
When Would We Perform Active Surveillance?

<table>
<thead>
<tr>
<th>WHO Phase</th>
<th>Pandemic Alert Period</th>
<th>Pandemic Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USG Stage</th>
<th>New Domestic Animal Outbreak in At-Risk Country</th>
<th>Suspected Human Outbreak Overseas</th>
<th>Confirmed Human Outbreak Overseas</th>
<th>Widespread Outbreaks Overseas</th>
<th>First Human Case in N.A.</th>
<th>Spread Throughout United States</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>0 1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDC Interval</th>
<th>Investigation</th>
<th>Recognition</th>
<th>Initiation</th>
<th>Accel</th>
<th>Peak</th>
<th>Decel</th>
<th>Resolution</th>
</tr>
</thead>
</table>

Pre- Pandemic Intervals
- Investigation
- Recognition

Pandemic Intervals
- Initiation
- Acceleration
- Peak Transmission
- Deceleration
- Resolution
When Would We Perform Active Surveillance?

Current pre-pandemic situation
Identification of infection due to novel influenza viruses – focus on investigation and containment overseas
Passive surveillance…no active screening
When Would We Perform Active Surveillance?

Confirmation of human cases and demonstration of efficient and sustained human-to-human transmission overseas

RBBS likely to be initiated in this Interval
When Would We Perform Active Surveillance?

First laboratory confirmed case of pandemic influenza in N. America
Active surveillance and screening at ports
RBBS likely to be continued through the end of this Interval
The Big Question

- What tool or combination of tools would have adequate sensitivity, specificity, and predictive values so as to provide benefits greater than costs?
Questions

• What is the value of health declarations, interviews, examinations…sensitivity, specificity, predictive value?

• Do we take action based on screening results without laboratory confirmation?

• Who is really at risk for infection when there is one person on an aircraft with influenza? All the passengers? Those seated close to the ill person?
ITDS Questions

• What are the marginal costs of using ITDS as part of a risk based border strategy?

• What are the marginal benefits of ITDS?

• Could the people required to run ITDS be better utilized doing something else?

• What is appropriate response to positive findings?
ITDS Questions

• Would thermal screening provide reassurance OR cause excessive concern?

• Would prospect of thermal screening deter ill individuals from traveling?

• Would ITDS make people more honest?

• Would ill people take measures to mask fever to avoid detection?
Border Travel Restriction Options

- **Nothing**
 - No restrictions on people or cargo

- **Complete Border Closure**
 - Stop people & cargo

- **Partial Border Closure**
 - Stop people
 - Allow cargo

- **Risk-based Border Strategy (RBBS)**
 - Allow people & cargo to flow
 - Conditional entry of people based on risk
 - Target high risk persons for earliest diagnostics and interventions