Influenza Vaccines

Nancy J. Cox, Ph.D.
Director, Influenza Division
National Center for Immunization and Respiratory Diseases
US Centers for Disease Control and Prevention
Influenza A Viruses

• Influenza A viruses categorized by subtype
 • Classified according to two surface proteins

 • Hemagglutinin (H) – 16 known
 – Site of attachment to host cells
 – Antibody to HA is protective

 • Neuraminidase (N) – 9 known
 – Helps release virions from cells
 – Antibody to NA can help modify disease severity
Seasonal and Pandemic Influenza: Highly Transmissible
Best Prevention = Annual Vaccination
Brief History of Influenza Vaccines

- Early 1940s: Inactivated influenza virus vaccines developed by U.S. military to mitigate disruption caused by respiratory outbreaks
 - Vaccine viruses were grown in eggs, purified and inactivated
- 1947: Significant antigenic change occurred in the circulating virus compared to the vaccine virus; vaccine failed to protect
- 1947: Recognition that global surveillance for influenza viruses to detect new epidemic and pandemic viruses was needed
- 1952: The World Health Organization’s Global Influenza Surveillance Network became active
- Early 1980s: Improvements in virus purification and measurement of antigen content of vaccine reduced local SE
- 1960-70s: Live Attenuated Influenza Vaccines developed in Russia and the U.S.
- Since 2004: Significant investments in new vaccine technologies by governments and industry
WHO Global Influenza Surveillance

- WHO Collaborating Centers: Atlanta, London, Melbourne, and Tokyo

- 125 NICs in 95 countries
- Focused on surveillance and vaccine strain selection
- Pandemic preparedness
- Surveillance for drug resistance
- Diagnosis, regents, training
Current Status of WHO System: Surge Capacity

- 175,000 isolates/yr (600 to 1200 M cases)
 - Demands on laboratories around the world increased dramatically with nH1N1 emergence and spread

- WHO CCs receive 6,500 – 8,000 samples/yr
 - CC at CDC has received more samples than entire system had in the past due to nH1N1

- WHO CCs and NICs sequence HA of 1,000 samples/yr; complete genomes sequenced
 - More viruses sequenced than ever before for nH1N1 viruses

- >400 M doses of trivalent seasonal influenza vaccine w/wide
 - nH1N1 vaccines are being produced for clinical trials but how much vax will be available and when?
Considerations for New Vaccine Strain

Recommendations

• Are there new antigenic variants?
 – Antigenic and genetic characterization

• Are new variants spreading?
 – Monitoring Influenza activity and virus isolation

• Are current vaccines able to induce antibodies to the new variants?
 – Serological evaluation of vaccinated individuals

• Are any new variants useful for vaccine production?
 – Cell substrate of isolation
 – Reassortants
Molecular Epidemiology and Vaccine Development

- Genetic Characterization
- Antiviral Resistance Monitoring
- Cell-Based Vaccines
- Vaccine Strain Selection
- Reverse Genetics
- Vaccine Candidate
- Pandemic Risk Assessment

hemagglutinin
New Antigenic Variant?
Antigenic Analysis

- Hemagglutination Inhibition
- Post infection ferret antisera
- Reference viruses
- WHO test of choice
<table>
<thead>
<tr>
<th>STRAIN DESIGNATION</th>
<th>NJ/8/76</th>
<th>WI/10*</th>
<th>IL/9*</th>
<th>CA/07</th>
<th>MX/4108</th>
<th>NY/18</th>
<th>TX/15</th>
<th>AS/59</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/NEW JERSEY/8/1976</td>
<td>640</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>A/WISCONSIN/10/98*</td>
<td>80</td>
<td>1280</td>
<td>1280</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>5</td>
</tr>
<tr>
<td>A/ILLINOIS/9(33304)/2007*</td>
<td>160</td>
<td>1280</td>
<td>5120</td>
<td>2560</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>A/California/07/2009</td>
<td>10</td>
<td>320</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>A/Mexico/4108/2009</td>
<td>10</td>
<td>320</td>
<td>1280</td>
<td>2560</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>5</td>
</tr>
<tr>
<td>A/New York/18/2009</td>
<td>5</td>
<td>320</td>
<td>640</td>
<td>1280</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>5</td>
</tr>
<tr>
<td>A/Texas/15/2009 FATAL</td>
<td>10</td>
<td>640</td>
<td>2560</td>
<td>5120</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>A/BRISBANE/59/07</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST ANTIGENS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A/California/7/09 X-179A</td>
<td>5</td>
<td>640</td>
<td>2560</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>A/Texas/5/2009 XPR8-IDCDC RG15</td>
<td>5</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Utah 249817 FATAL</td>
<td>5</td>
<td>160</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Washington V19-4347 FATAL</td>
<td>5</td>
<td>160</td>
<td>1280</td>
<td>1280</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>5</td>
</tr>
<tr>
<td>Arizona PV09124151 FATAL</td>
<td>5</td>
<td>320</td>
<td>1280</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>Montana 723335</td>
<td>10</td>
<td>320</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Maine VSP-001799</td>
<td>10</td>
<td>640</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>Nevada 1050</td>
<td>5</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Utah 243727</td>
<td>5</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>A/Nonthaburi/102/09</td>
<td>10</td>
<td>640</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>1280</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>Guatemala 450</td>
<td>5</td>
<td>320</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>640</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Colombia 330</td>
<td>5</td>
<td>640</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>El Salvador 351</td>
<td>5</td>
<td>320</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>Mexico/4593/2009</td>
<td>40</td>
<td>1280</td>
<td>2560</td>
<td>5120</td>
<td>2560</td>
<td>1280</td>
<td>2560</td>
<td>5</td>
</tr>
<tr>
<td>A/Auckland/1/2009</td>
<td>5</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>1280</td>
<td>640</td>
<td>1280</td>
<td>5</td>
</tr>
<tr>
<td>A/England/195/2009</td>
<td>10</td>
<td>640</td>
<td>2560</td>
<td>5120</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>2560</td>
</tr>
</tbody>
</table>
Phylogenetic Tree of Hemagglutinin H1: Swine vs. Seasonal

Novel H1N1 Outbreak
Human cases of swine H1
Seasonal H1

(Garten, et al Science 2009)
Summary of Genetic and Antigenic Analyses of nH1N1 Viruses

- The combination of gene segments of nH1N1 viruses had not been reported previously.
- Reassortment had occurred between EA swine and NA swine lineage triple reassortant viruses.
- No genetic markers for severe disease in viral genes detected yet.
- Genetically and antigenically homogeneous but different from other circulating influenza viruses.
- Homogeneity made selecting a reference vaccine virus easy.
Serum Cross-reactive Antibody Response to a Novel Influenza A(H1N1) Virus After Vaccination with Seasonal Influenza Vaccines, MMWR May 2009

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Influenza season</th>
<th>Influenza virus</th>
<th>Age group</th>
<th>No.</th>
<th>% with fourfold or greater increase in antibody titer</th>
<th>% with MN titer of $\geq 40^a$</th>
<th>Geometric mean titer (GMT)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevacination</td>
<td>Postvacination</td>
<td>Prevacination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(95% CI)**</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2007–08</td>
<td>A/Solomon is/3/2006</td>
<td>5–9 yrs</td>
<td>13</td>
<td>85</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td></td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2008–09</td>
<td>A/Brisbane/59/2007</td>
<td>6 mos–3 yrs</td>
<td>9</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

* A/California/04/2009.
† A fourfold or greater increase in antibody titer indicates seroconversion (a response to the vaccine).
‡ A linear regression model was used to predict the MN titer for seasonal H1N1 viruses that corresponded to a hemagglutination inhibition (HI) antibody titer of 40. (Serum HI antibody titers of 40 are associated with at least a 50% decrease in risk for influenza infection or disease [7]). In pediatric populations, an HI titer of 40 corresponds with an MN titer of 40.
§ A titer of 1280 was used for all samples with a titer of ≥ 1280. The dilution of sera in the first well is based on the combination of a 1:10 serum dilution with an equal volume of diluted virus for a final serum dilution referred to as 1:10. In the statistical models, study participants were treated as random effects sampled from a larger population of study participants, and duplicate samples were treated as random effects nested within each study participant.
** Confidence interval.
†† Trivalent, inactivated influenza vaccine.
§§ Live, attenuated influenza vaccine.
Serum Cross-reactive Antibody Response to a Novel Influenza A(H1N1) Virus After Vaccination with Seasonal Influenza Vaccines, MMWR May 2009

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Influenza season</th>
<th>Influenza virus</th>
<th>Age group (yrs)</th>
<th>No.</th>
<th>% with fourfold or greater increase in antibody titer†</th>
<th>% with MN titer of ≥160§</th>
<th>Geometric mean titer (GMT)¹¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevacccination</td>
<td>Postvaccination</td>
<td>Prevaccination (95% CI)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td>19</td>
<td>19</td>
<td>9</td>
<td>28 (23–34)</td>
</tr>
<tr>
<td>2008–09</td>
<td></td>
<td>A/Brisbane/59/2007</td>
<td>18–40</td>
<td>83</td>
<td>78</td>
<td>20</td>
<td>29 (22–38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td>12</td>
<td>6</td>
<td>7</td>
<td>11 (9–14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/California/04/2009</td>
<td></td>
<td>3</td>
<td>3</td>
<td>33</td>
<td>92 (71–121)</td>
</tr>
</tbody>
</table>

* ACalifornia/04/2009.
† A fourfold or greater increase in antibody titer indicates seroconversion (a response to the vaccine).
§ A linear regression model was used to predict the MN titer for seasonal H1N1 viruses that corresponded to a hemagglutination inhibition (HI) antibody titer of 40. (Serum HI antibody titers of 40 are associated with at least a 50% decrease in risk for influenza infection or disease [7].) In adult populations, an HI titer of 40 corresponds with an MN titer of ≥160.
†† A titer of 1280 was used for all samples with a titer of ≥1280. The dilution of sera in the first well is based on the combination of a 1:10 serum dilution with an equal volume of diluted virus for a final serum dilution referred to as 1:10. In the statistical models, study participants were treated as random effects sampled from a larger population of study participants, and duplicate samples were treated as random effects nested within each study participant.
** Confidence interval.
†† Trivalent, inactivated influenza vaccine.
Novel Influenza A (H1N1) Cases by Weekly Report Date as of 19 JUN 2009 (n=) *21,449

*Data for week ending 19 June 2009.
Dates not available for 92 cases.
Reassortment
Between Good Luck and Misfortune

Valentin de Boulogne 1620
Engineer Safe Vaccine Viruses
Reverse Genetics

BSL2-with level 3 enhancements

H5N1 avian flu virus

High Yield Attenuated virus (PR8)

HA gene
NA gene

Vero Cells

High Yield avirulent vaccine

BSL2 virus

9 days
Candidate Pandemic H1N1 Vaccines

WHO Safety Guidelines

- 2003 WHO Guidance
 - Development in BSL3-enhanced environment
 - High-yield reassortant with attenuated virus genes
 - Reduce virulence compared to parental wild-type virus
 - GLP laboratory protocols and QA program
 - Certified Vero cells free of adventitious agents
Pandemic Vaccines
QC and Safety Assessment

- QC procedures
 - Nucleotide sequence analysis
 - Antigenic characterization
 - Growth properties

- Lack of pathogenicity
 - Ferrets
 - No neural replication; minimal extraneural replication

- BSL2-enhanced to BSL2 Transfer

- Distribute to manufacturers & support scale-up

~3 days

Up to 10 days
Cause of Death in Low Income Countries

<table>
<thead>
<tr>
<th>Cause</th>
<th>Deaths in millions</th>
<th>% of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease</td>
<td>3.10</td>
<td>10.8</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>2.86</td>
<td>10.0</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>2.14</td>
<td>7.5</td>
</tr>
<tr>
<td>Perinatal conditions</td>
<td>1.83</td>
<td>6.4</td>
</tr>
<tr>
<td>Stroke & cerebrovascular dz</td>
<td>1.72</td>
<td>6.0</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>1.54</td>
<td>5.4</td>
</tr>
<tr>
<td>Malaria</td>
<td>1.24</td>
<td>4.4</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1.10</td>
<td>3.8</td>
</tr>
<tr>
<td>Chronic obstructive pulm. dz</td>
<td>0.88</td>
<td>3.1</td>
</tr>
<tr>
<td>Road traffic accidents</td>
<td>0.53</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Source: WHO Fact sheet № 310 / February 2007
Short Term Goals for Pandemic H1N1 Vaccine Production

- Produce safe and effective pandemic H1N1 vaccines as quickly as possible
- Produce as much vaccine as possible
- Determine goals of vaccination programs
 - Reduce severity of pandemic and social disruption
 - Identify target populations for vaccination (set priority groups)
- Determine best ways to distribute vaccines
 - Reach target populations in resource poor and rich countries
- Distribute and administer safe and effective vaccine
- Mitigate the health and societal effects of the pandemic
Long Term Goals for Influenza Vaccine Production

- Increase global production capacity
 - Current manufacturers have built larger production facilities
 - Additional manufacturers are planning to produce vaccines, including those in middle income countries

- Increase vaccine production in middle income countries (and uptake of vaccine globally, including in resource poor countries)

- Increase types of influenza vaccines that are licensed
 - Many novel approaches are being explored

- Transfer technologies for vaccine production to middle income and resource poor countries, as possible
Key Questions

- How well are vaccine viruses growing for production?
 - Determines how much vaccine will be available and timing

- How quickly can clinical trials be completed?
 - Vaccines must be safe and effective

- What will the intensity of the expected fall wave in the NH?

- When will vaccine be available?
 - In time for expected wave of disease or later?

- For whom should it be recommended?
 - Depends on goals of vaccination program

- How will vaccine be shared with resource poor countries?
 - Planning and discussions underway at WHO and elsewhere
 - Target populations and delivery systems