Efectos del metabolismo en la infancia y mediana edad | 06 ENE 20

Resistencia a insulina, diabetes y estado cognitivo

La asociación de diabetes tipo 2 de la mediana edad, hiperglucemia y resistencia a la insulina con la función cognitiva en la vejez ¿Son consecuencia de factores de la infancia que actúan separadamente sobre estos resultados?
INDICE:  1. Página 1 | 2. Referencias bibliográficas
Referencias bibliográficas

1. Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. InternMed J 42(5):484–491. https://doi.org/ 10.1111/j.1445-5994.2012.02758.x

2. Chatterjee S, Peters SAE, Woodward M et al (2015) Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39(2):300–307. https://

doi.org/10.2337/dc15-1588

3. Nooyens ACJ, Baan CA, Spijkerman AMW, Verschuren WMM (2010) Type 2 diabetes and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Diabetes Care 33(9): 1964–1969. https://doi.org/10.2337/dc09-2038

4. Cukierman-Yaffe T, Gerstein HC, Williamson JD et al (2009) Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) trial. Diabetes Care 32(2):221–226. https://doi.org/10.2337/dc08-1153

5. Altschul DM, Starr JM, Deary IJ (2018) Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia 61(9): 1946–1955. https://doi.org/10.1007/s00125-018-4645-8

6. Livingston G, Sommerlad A, Orgeta Vet al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

7. Tuligenga RH, Dugravot A, Tabák AG et al (2014) Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol 2(3):228–235. https://doi.org/10.1016/S2213-8587(13)70192-X

8. Rawlings AM, Sharrett AR, Schneider ALC et al (2014) Diabetes in midlife and cognitive change over 20 years. Ann Intern Med 161(11):785–793. https://doi.org/10.7326/M14-0737

9. Saczynski JS, Jonsdottir MK, Garcia ME et al (2008) Cognitive impairment: an increasingly important complication of type 2 diabetes: the Age, Gene/Environment Susceptibility-Reykjavik Study. Am J Epidemiol 168(10):1132–1139. https://doi.org/10.1093/aje/kwn228

10. Marden JR, Mayeda ER, Tchetgen Tchetgen EJ, Kawachi I, Glymour MM (2017) High hemoglobin A1c and diabetes predict memory decline in the health and retirement study. Alzheimer Dis Assoc Disord 31(1):48–54. https://doi.org/10.1097/WAD.

0000000000000182

11. Crane PK, Walker R, Hubbard RA et al (2013) Glucose levels and risk of dementia. N Engl JMed 369(6):540–548. https://doi.org/10. 1056/NEJMoa1215740

12. Lutski M, Weinstein G, Goldbourt U, Tanne D (2017) Insulin resistance and future cognitive performance and cognitive decline in elderly patients with cardiovascular disease. J Alzheimers Dis 57(2):633–643. https://doi.org/10.3233/JAD-161016

13. Spauwen PJJ, Kohler S, Verhey FRJ, Stehouwer CDA, van Boxtel MPJ (2013) Effects of type 2 diabetes on 12-year cognitive change: results from the Maastricht Aging Study. Diabetes Care 36(6):

1554–1561. https://doi.org/10.2337/dc12-0746 14. Sutherland GT, Lim J, Srikanth V, Bruce DG (2017) Epidemiological approaches to understanding the link between type 2 diabetes and dementia. J Alzheimers Dis 59(2):393–403.

https://doi.org/10.3233/JAD-161194

15. Hagenaars SP, Gale CR, Deary IJ, Harris SE (2017) Cognitive ability and physical health: a Mendelian randomization study. Sci Rep 7(1):2651. https://doi.org/10.1038/s41598-017-02837-3

16. Hagenaars SP, Harris SE, Davies G et al (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol Psychiatry 21(11):1624–1632. https://doi.org/10.1038/mp.2015.

225

17. Larsson SC, Traylor M, Malik R et al (2017) Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ 359:j5375. https://doi.org/10.1136/BMJ.J5375

18. Østergaard SD, Mukherjee S, Sharp SJ et al (2015) Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study. PLoS Med 12(6):e1001841. https://doi.org/10.1371/journal.pmed.1001841

19. Tamayo T, Herder C, Rathmann W (2010) Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review. BMC Public Health 10(1):525. https://doi.org/ 10.1186/1471-2458-10-525

20. Richards SA (2003) Lifetime antecedents of cognitive reserve. J Clin Exp Neuropsychol 25(5):614–624. https://doi.org/10.1076/ jcen.25.5.614.14581

21. Wadsworth M, Kuh D, Richards M, Hardy R (2006) Cohort profile: the 1946 National Birth Cohort (MRC National Survey of Health and Development). Int J Epidemiol 35(1):49–54. https://doi.org/10.1093/ije/dyi201

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024