Técnica CRISPR: virus del papiloma humano, zika y dengue | 19 FEB 18

Nuevos test ultrasensibles para detectar enfermedades

Esta semana dos equipos rivales, líderes en edición genética, han anunciado nuevos bisturís moleculares que diagnostican infecciones de manera rápida y muy sencilla
Autor/a: Ana Hernando  Agencia SINC

Uno de los métodos es capaz de apreciar minúsculas cantidades de virus del papiloma humano en una muestra de sangre. El otro es una tira de papel que funciona como un test de embarazo, pero para detectar los virus del zika y el dengue.

Los laboratorios de dos líderes mundiales en edición genética han presentado esta semana en Science estudios separados sobre dos plataformas basadas en CRISPR para detectar enfermedades, denominadas DETECTR y SHERLOCK.

Se trata de la catedrática Jennifer Doudna de la Universidad de California en Berkeley y del investigador Feng Zhang del Broad Institute del Massachusetts Institute of Tecnology (MIT), que mantienen una disputa por una serie de patentes de las aplicaciones de la técnica de corta-pega genético CRISPR Cas9: Esta herramienta fue descubierta en 2012 por Doudna y la bioquímica francesa Emmanuelle Charpentier.

En esta ocasión, las nuevas plataformas de diagnóstico han usado las proteínas Cas12a –antes llamada Cpf1– y Cas13, que cortan el ADN de manera distinta a Cas9. Estos bisturís moleculares son idóneos para detectar ácidos nucleicos.

Una tira de papel para el zika y el dengue

El laboratorio de Feng Zhang, en el Broad Institute, ha desarrollado una versión mejorada de su sistema SHERLOCK basada en enzimas Cas13 para detectar el virus del Zika y del dengue. Los investigadores han creado un test con forma de tira de papel, similar a los test de embarazo, que tras sumergirse en una muestra procesada indica con una línea si el objetivo (el material genético del virus) se detectó o no.

Tras sumergirse en una muestra procesada, la tira de papel indica si hay virus de Zika y dengue

Según explican, el éxito de su plataforma está asociado con la proteína Cas13 que, cuando localiza y corta su objetivo específico, se activa y corta indiscriminadamente otros ARN cercanos. El equipo diseñó el sistema para que fuera compatible tanto con el ADN como con el ARN.

El poder de diagnóstico de SHERLOCK se basa en hebras adicionales de ARN sintético que se utilizan para crear una señal. Cas13 corta este ARN después de golpear su objetivo original. El corte libera la molécula de señalización que indica la presencia del virus.

“Estos avances aceleran la capacidad de SHERLOCK para detectar de forma rápida y precisa las firmas genéticas, incluidos patógenos y el ADN tumoral, en muestras”, subraya Jonathan Gootenberg, líder del estudio.

Fluorescencia en el tubo de ensayo

Por su parte, Janice Chen, Enbo Ma y Lucas Harrington, del laboratorio de Doudna, han utilizado la proteína Cas12a, descubierta en 2015. Durante la investigación, observaron una actividad inesperada: cuando corta una secuencia de ADN de doble cadena, desata el corte indiscriminado de todo el ADN de cadena sencilla.

“La mayor parte del ADN de una célula tiene forma de hélice de doble cadena, por lo que no es un problema para las aplicaciones de edición de genes”, explican los autores. “Pero nos permite utilizar una molécula ‘indicadora’ de cadena sencilla con la proteína CRISPR-Cas12a, que produce una señal fluorescente cuando ha encontrado su objetivo”.

Imagen_2

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

CONTENIDOS RELACIONADOS
AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024