Problemas y soluciones posibles | 18 MAY 15

Dosificación personalizada de antibióticos en pacientes críticamente enfermos

Problemas derivados de los pacientes y los patógenos que contribuyen a una inadecuada dosificación de los antibióticos. Es muy importante considerar la farmacocinética y farmacodinámica de cada paciente.
Autor/a: Dres. Jason A Roberts, Mohd H Abdul-Aziz, Jeff rey Lipman, Johan W Mouton, Alexander A Vinks, Timothy W Felton, William W Hope, Andras Farkas Lancet Infect Dis 2014;14: 498–509
INDICE:  1.  | 2. 

1 Lipman J, Udy AA, Roberts JA. Do we understand the impact of altered physiology, consequent interventions and resultant clinical scenarios in the intensive care unit? The antibiotic story. Anaesth Intensive Care 2011; 39: 999–1000.
2 Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37: 840–51, quiz 859.
3 Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 2007; 35: 1244–50.
4 Bellomo R, Cass A, Cole L, et al, and the RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009; 361: 1627–38.
5 Finfer S, Chittock DR, Su SY, et al, and the NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283–97.
6 Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115: 462–74.
7 Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of eff ective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589–96.
8 MacArthur RD, Miller M, Albertson T, et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 2004; 38: 284–88.
9 Ranieri VM, Thompson BT, Barie PS, et al, and the PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366: 2055–64.
10 Scaglione F, Esposito S, Leone S, et al. Feedback dose alteration signifi cantly aff ects probability of pathogen eradication in nosocomial pneumonia. Eur Respir J 2009; 34: 394–400.
11 Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1–10.
12 Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2004; 2: 289–300.
13 van Lent-Evers NA, Mathôt RA, Geus WP, van Hout BA, Vinks AA. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-eff ectiveness analysis. Ther Drug Monit 1999; 21: 63–73.
14 Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fl uoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45: 2793–97.
15 Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofl oxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073–81.
16 Crandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54: 1111–16.
17 Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 2007; 51: 1725–30.
18 Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother 2013; 68: 900–06.
19 Roberts JA, Ulldemolins M, Roberts MS, et al. Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 2010; 36: 332–39.
20 Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004; 43: 925–42.
21 Zelenitsky S, Rubinstein E, Ariano R, et al, and the Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 2013; 41: 255–60.
22 Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 2003; 42: 1411–23.
23 Roberts JA, De Waele JJ, Dimopoulos G, et al. DALI: Defi ning Antibiotic Levels in Intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect Dis 2012; 12: 152.
24 Roberts JA, Paul SK, Akova M, et al, and the DALI Study Authors. DALI: Defi ning Antibiotic Levels in Intensive care unit patients: Are current beta-lactam antibiotic doses suffi cient for critically ill patients? Clin Infect Dis Feb 28, 2014; http://www.ncbi.nlm.nih.gov/pubmed/24429437
25 van der Poll T. Immunotherapy of sepsis. Lancet Infect Dis 2001; 1: 165–74.
26 Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care 2011; 15: R206.
27 Gous A, Lipman J, Scribante J, et al. Fluid shifts have no infl uence on ciprofl oxacin pharmacokinetics in intensive care patients with intra-abdominal sepsis. Int J Antimicrob Agents 2005; 26: 50–55.
28 Conil JM, Georges B, Breden A, et al. Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int J Antimicrob Agents 2006; 28: 226–30.
29 Marik PE. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 1993; 21: 172–73.
30 Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA.
Does Beta-lactam Pharmacokinetic Variability in Critically Ill Patients Justify Therapeutic Drug Monitoring? A Systematic Review. Ann Intensive Care 2012; 2: 35.
31 Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother 2011; 55: 2704–09.
32 Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 2006; 50: 2455–63.
33 Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, and the SAFE Study Investigators. A comparison of albumin and saline for fl uid resuscitation in the intensive care unit. N Engl J Med 2004; 350: 2247–56.
34 Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The eff ects of hypoalbuminaemia on optimizing antibiotic dosing in critically ill patients. Clin Pharmacokinet 2011; 50: 1–12.
35 Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet 2013; 52: 1–8.
36 Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 2001; 47: 421–29.
37 Ulldemolins M, Roberts JA, Wallis SC, Rello J, Lipman J. Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: special emphasis on unbound pharmacokinetics. J Antimicrob Chemother 2010; 65: 1771–78.
38 Brink AJ, Richards GA, Schillack V, Kiem S, Schentag J. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents 2009; 33: 432–36.
39 Burkhardt O, Kumar V, Katterwe D, et al. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 2007; 59: 277–84. 40 Dvorchik B, Arbeit RD, Chung J, Liu S, Knebel W, Kastrissios H. Population pharmacokinetics of daptomycin. Antimicrob Agents Chemother 2004; 48: 2799–807.
41 Mouton JW, Jacobs N, Tiddens H, Horrevorts AM. Pharmacodynamics of tobramycin in patients with cystic fi brosis. Diagn Microbiol Infect Dis 2005; 52: 123–27.
42 Mouton JW, van Ogtrop ML, Andes D, Craig WA. Use of pharmacodynamic indices to predict effi cacy of combination therapy in vivo. Antimicrob Agents Chemother 1999; 43: 2473–78.www.thelancet.com/infection Vol 14 June 2014 507
43 Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic effi cacy in an animal model. J Infect Dis 1988; 158: 831–47.
44 Ryan DM. Pharmacokinetics of antibiotics in natural and experimental superfi cial compartments in animals and humans. J Antimicrob Chemother 1993; 31 (suppl D): 1–16.
45 Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 2001; 29: 385–91.
46 Joukhadar C, Klein N, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 2002; 30: 1478–82.
47 Joukhadar C, Klein N, Dittrich P, et al. Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 2003; 51: 1247–52.
48 Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Piperacillin penetration into tissue of critically ill patients with sepsis--bolus versus continuous administration? Crit Care Med 2009; 37: 926–33.
49 Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofl oxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother 2003; 47: 3548–53.
50 Di Giantomasso D, May CN, Bellomo R. Vital organ blood fl ow during hyperdynamic sepsis. Chest 2003; 124: 1053–59.
51 Lipman J, Wallis SC, Boots RJ. Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 2003; 97: 1149–54.
52 Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol 2011; 7: 539–43.
53 Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R, Lizán-García M. Glomerular hyperfi ltration and albuminuria in critically ill patients. Anaesth Intensive Care 2008; 36: 674–80.
54 Udy AA, Varghese JM, Altukroni M, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142: 30–39.
55 Bagshaw SM, George C, Dinu I, Bellomo R. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 2008; 23: 1203–10.
56 Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 2009; 37: 2268–82.
57 Jamal JA, Economou CJ, Lipman J, Roberts JA. Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Crit Care 2012; 18: 460–71.
58 Bagshaw SM, Uchino S, Bellomo R, et al, and the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2007; 2: 431–39.
59 Roberts DM, Roberts JA, Roberts MS, et al, and the RENAL Replacement Therapy Study Investigators. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 2012; 40: 1523–28.
60 Seyler L, Cotton F, Taccone FS, et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 2011; 15: R137.
61 Vincent JL, Rello J, Marshall J, et al, and the EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302: 2323–29.
62 Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fl uid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50: 637–64.
63 Boselli E, Breilh D, Dufl o F, et al. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med 2003; 31: 2102–06.
64 Kontou P, Chatzika K, Pitsiou G, Stanopoulos I, Argyropoulou-Pataka P, Kioumis I. Pharmacokinetics of ciprofl oxacin and its penetration into bronchial secretions of mechanically ventilated patients with chronic obstructive pulmonary disease. Antimicrob Agents Chemother 2011; 55: 4149–53.
65 Boselli E, Breilh D, Rimmelé T, et al. Alveolar concentrations of piperacillin/tazobactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit Care Med 2008; 36: 1500–06.
66 Boselli E, Breilh D, Rimmelé T, et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004; 30: 989–91.
67 Boselli E, Breilh D, Cannesson M, et al. Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004; 30: 976–79.
68 Lodise TP, Sorgel F, Melnick D, Mason B, Kinzig M, Drusano GL. Penetration of meropenem into epithelial lining fl uid of patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2011; 55: 1606–10.
69 Lu Q, Luo R, Bodin L, et al, and the Nebulized Antibiotics Study Group. Effi cacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012; 117: 1335–47.
70 McKindley DS, Hanes S, Boucher BA. Hepatic drug metabolism in critical illness. Pharmacotherapy 1998; 18: 759–78.
71 Ulldemolins M, Roberts JA, Lipman J, Rello J. Antibiotic dosing in multiple organ dysfunction syndrome. Chest 2011; 139: 1210–20.
72 Hope WW, Vanguilder M, Donnelly JP, et al. Software for dosage individualization of voriconazole for immunocompromised patients. Antimicrob Agents Chemother 2013; 57: 1888–94.
73 Rhomberg PR, Fritsche TR, Sader HS, Jones RN. Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward Gram-negative isolates from the Meropenem Yearly Susceptibility Test Information Collection Program (USA). Diagn Microbiol Infect Dis 2006; 56: 57–62.
74 Samtani MN, Flamm R, Kaniga K, Nandy P. Pharmacokinetic-pharmacodynamic-model-guided doripenem dosing in critically ill patients. Antimicrob Agents Chemother 2010; 54: 2360–64. 75 Valenza G, Seifert H, Decker-Burgard S, Laeuff er J, Morrissey I,
Mutters R, and the COMPACT Germany Study Group. Comparative Activity of Carbapenem Testing (COMPACT) study in Germany. Int J Antimicrob Agents 2012; 39: 255–58.
76 Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 2009; 49: 325–27.
77 Patzer JA, Dzierzanowska D, Turner PJ. Trends in antimicrobial susceptibility of Gram-negative isolates from a paediatric intensive care unit in Warsaw: results from the MYSTIC programme (1997–2007). J Antimicrob Chemother 2008; 62: 369–75.
78 Binkley S, Fishman NO, LaRosa LA, et al. Comparison of unit-specifi c and hospital-wide antibiograms: potential implications for selection of empirical antimicrobial therapy. Infect Control Hosp Epidemiol 2006; 27: 682–87.
79 Lee K, Kim MN, Kim JS, et al, and the KONSAR Group. Further increases in carbapenem-, amikacin-, and fl uoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J 2011; 52: 793–802.
80 Gillespie EL, Kuti JL, Nicolau DP. When “S” does not mean success: the importance of choice of antibiotic and dose on clinical and economic outcomes of severe infection. Conn Med 2005; 69: 203–10.
81 Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007; 44: 79–86.
82 Kashuba ADM, Nafziger AN, Drusano GL, Bertino JSJ Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43: 623–29.
83 Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155: 93–99.
84 Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45: 753–60.
85 Highet VS, Forrest A, Ballow CH, Schentag JJ. Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of effi cacy. J Antimicrob Chemother 1999; 43 (suppl A): 55–63.
86 Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003; 52: 668–74.
87 Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 2008; 52: 3987–93.
88 Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo effi cacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM effl ux pumps. Diagn Microbiol Infect Dis 2007; 57: 153–61.
89 Ariano RE, Nyhlén A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 2005; 39: 32–38.
90 Tam VH, Schilling AN, Melnick DA, Coyle EA. Comparison of beta-lactams in counter-selecting resistance of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2005; 52: 145–51.
91 Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 4920–27.
92 McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31: 345–51.
93 Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 2002; 50: 425–28.
94 Knudsen JD, Odenholt I, Erlendsdottir H, et al. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models. Antimicrob Agents Chemother 2003; 47: 2499–506.
95 Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 1996; 15: 255–59.
96 Zelenitsky SA, Ariano RE. Support for higher ciprofl oxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 2010; 65: 1725–32.
97 Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofl oxacin: a new paradigm for early clinical trials. JAMA 1998; 279: 125–29.
98 Peloquin CA, Cumbo TJ, Nix DE, Sands MF, Schentag JJ. Evaluation of intravenous ciprofl oxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med 1989; 149: 2269–73.
99 Jumbe N, Louie A, Leary R, et al. Application of a mathematical model to prevent in vivo amplifi cation of antibiotic-resistant bacterial populations during therapy. J Clin Invest 2003; 112: 275–85.
100 Tam VH, Louie A, Deziel MR, Liu W, Leary R, Drusano GL.
Bacterial-population responses to drug-selective pressure: examination of garenoxacin’s eff ect on Pseudomonas aeruginosa. J Infect Dis 2005; 192: 420–28.
101 Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. Selection of ciprofl oxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother 2006; 57: 1116–21.
102 Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J. Relationship between fl uoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 2004; 189: 1590–97.
103 Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17: 479–501.
104 Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother 2006; 58: 1185–92.
105 van Ogtrop ML, Andes D, Stamstad TJ, et al. In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 2000; 44: 943–49.
106 Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ. Pharmacokinetic/pharmacodynamic profi le for tigecycline-a new glycylcycline antimicrobial agent. Diagn Microbiol Infect Dis 2005; 52: 165–71.
107 Rubino CM, Bhavnani SM, Forrest A, et al. Pharmacokinetics-pharmacodynamics of tigecycline in patients with community-acquired pneumonia. Antimicrob Agents Chemother 2012; 56: 130–36.
108 Bhavnani SM, Rubino CM, Hammel JP, et al. Pharmacological and patient-specifi c response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob Agents Chemother 2012; 56: 1065–72.
109 Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ. The pharmacokinetic and pharmacodynamic profi le of tigecycline. Clin Infect Dis 2005; 41 (suppl 5): S333–40.
110 Passarell JA, Meagher AK, Liolios K, et al. Exposure-response analyses of tigecycline effi cacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 2008; 52: 204–10.
111 Dandekar PK, Tessier PR, Williams P, Nightingale CH, Nicolau DP. Pharmacodynamic profi le of daptomycin against Enterococcus species and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. J Antimicrob Chemother 2003; 52: 405–11.
112 Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 2004; 48: 63–68.
113 Dudhani RV, Turnidge JD, Coulthard K, et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 2010; 54: 1117–24.
114 Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother 2010; 65: 1984–90.
115 Marik PE, Lipman J, Kobilski S, Scribante J. A prospective randomized study comparing once- versus twice-daily amikacin dosing in critically ill adult and paediatric patients. J Antimicrob Chemother 1991; 28: 753–64.
116 Munckhof WJ, Grayson ML, Turnidge JD. A meta-analysis of studies on the safety and effi cacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother 1996; 37: 645–63.
117 Crandon JL, Ariano RE, Zelenitsky SA, Nicasio AM, Kuti JL, Nicolau DP. Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med 2011; 37: 632–38.
118 Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis 2003; 36 (suppl 1): S42–50.
119 Lodise TP Jr, Lomaestro B, Rodvold KA, Danziger LH, Drusano GL. Pharmacodynamic profi ling of piperacillin in the presence of tazobactam in patients through the use of population pharmacokinetic models and Monte Carlo simulation. Antimicrob Agents Chemother 2004; 48: 4718–24.
120 Lomaestro BM, Drusano GL. Pharmacodynamic evaluation of extending the administration time of meropenem using a Monte Carlo simulation. Antimicrob Agents Chemother 2005; 49: 461–63.
121 Nicasio AM, Ariano RE, Zelenitsky SA, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2009; 53: 1476–81.
122 Nicolau DP, McNabb J, Lacy MK, Quintiliani R, Nightingale CH. Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia. Int J Antimicrob Agents 2001; 17: 497–504.
123 Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 2010; 35: 156–63.
124 Roberts JA, Lipman J. Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit Care Med 2013; 41: 489–95.
125 Dulhunty JM, Roberts JA, Davis JS, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 2013; 56: 236–44.
126 Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefi ts of continuous administration of beta-lactam antibiotics. Crit Care Med 2009; 37: 2071–78.
127 Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis 2005; 5: 581–89.
128 Arnold HM, Hollands JM, Skrupky LP, et al. Prolonged infusion antibiotics for suspected gram-negative infections in the ICU: a before-after study. Ann Pharmacother 2013; 47: 170–80.
129 Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44: 357–63.
130 Wysocki M, Delatour F, Faurisson F, et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 2001; 45: 2460–67.
131 Rello J, Sole-Violan J, Sa-Borges M, et al. Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med 2005; 33: 1983–87.
132 Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 2012; 73: 27–36.
133 Wong G, Briscoe S, Adnan S, et al. Protein binding of β-lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations? Antimicrob Agents Chemother 2013; 57: 6165–70.
134 Gauthier T, Lacarelle B, Marre F, Villard PH, Catalin J, Durand A. Predictive performance of two software packages (USC*PACK PC and Abbott PKS system) for the individualization of amikacin dosage in intensive care unit patients. Int J Biomed Comput 1994; 36: 131–34.
135 Pea F, Brollo L, Viale P, Pavan F, Furlanut M. Teicoplanin therapeutic drug monitoring in critically ill patients: a retrospective study emphasizing the importance of a loading dose. J Antimicrob Chemother 2003; 51: 971–75.
136 Delattre IK, Musuamba FT, Verbeeck RK, et al. Empirical models for dosage optimization of four beta-lactams in critically ill septic patients based on therapeutic drug monitoring of amikacin. Clin Biochem 2010; 43: 589–98.
137 Pea F, Furlanut M, Cojutti P, et al. Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 2010; 54: 4605–10.
138 Finnell DL, Davis GA, Cropp CD, Ensom MH. Validation of the Hartford nomogram in trauma surgery patients. Ann Pharmacother 1998; 32: 417–21.
139 Pea F, Furlanut M, Negri C, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother 2009; 53: 1863–67.
140 Pea F, Viale P, Cojutti P, Furlanut M. Dosing nomograms for attaining optimum concentrations of meropenem by continuous infusion in critically ill patients with severe gram-negative infections: a pharmacokinetics/pharmacodynamics-based approach. Antimicrob Agents Chemother 2012; 56: 6343–48.
141 Mouton JW, Vinks AA. Is continuous infusion of beta-lactam antibiotics worthwhile?--effi cacy and pharmacokinetic considerations. J Antimicrob Chemother 1996; 38: 5–15.
142 Muller AE, Schmitt-Hoff mann AH, Punt N, Mouton JW. Monte Carlo simulations based on phase 1 studies predict target attainment of ceftobiprole in nosocomial pneumonia patients: a validation study. Antimicrob Agents Chemother 2013; 57: 2047–53.
143 Tam VH, Kabbara S, Yeh RF, Leary RH. Impact of sample size on the performance of multiple-model pharmacokinetic simulations. Antimicrob Agents Chemother 2006; 50: 3950–52.
144 Roberts JA, Kirkpatrick CM, Lipman J. Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 2011; 66: 227–31.
145 Bayard DS, Milman MH, Schumitzky A. Design of dosage regimens: a multiple model stochastic control approach. Int J Biomed Comput 1994; 36: 103–15.

 

Comentarios

Para ver los comentarios de sus colegas o para expresar su opinión debe ingresar con su cuenta de IntraMed.

AAIP RNBD
Términos y condiciones de uso | Política de privacidad | Todos los derechos reservados | Copyright 1997-2024